28 research outputs found

    SEROPREVALENCE OF INFECTIOUS BOVINE RHINOTRACHEITIS (IBR) IN THE ANDAMAN AND NICOBAR ISLANDS, INDIA

    Get PDF
    Infectious Bovine Rhinotracheitis (IBR) is caused by Bovine herpesvirus-1 (BoHV-1), an infectious diseasecausing huge economic loss in dairy cattle. To keep dairy farming healthy and highly productive, there should be an IBR surveillance programme in dairy cattle, hence a study on the seroprevalence of IBR was undertaken in the Andaman and Nicobar Islands where the density of livestock population was more. A total of 418 cattle serum samples during 2019-20 from 11 villages of two districts of Andaman and Nicobar Islands were screened for IBR antibodies using ICAR-NIVEDI Avidin Biotin ELISA, of which 107 were found positive revealing 25.60% of seropositivity. HF crossbred and Jersey breed showed seropositivity of 24.06% and 33.33% respectively. Cattle of 5-6 years of age showed high seropositivity of 27.65- 38.98%. Hence, it is recommended to test raw fresh semen/frozen semen straws, dairy animals regularly for IBR antigen/ antibodies to avoid the spread of infection

    SEROPREVALENCE OF INFECTIOUS BOVINE RHINOTRACHEITIS (IBR) IN NORTH EASTERN (NE) STATES OF INDIA

    Get PDF
    Infectious bovine rhinotracheitis (IBR) is an infectious disease caused by BoHV-1 and belongs to the Herpesviridae family. IBR is endemic in India including north eastern states of the country. Hence the study was undertaken to understand the seroprevalence of IBR in north eastern parts of the country. A total of 3125 cattle (Holstein Friesian crossbred) serum samples from 35 districts of five north eastern states (Assam, Manipur, Meghalaya, Mizoram, and Sikkim) of India were screened for infectious bovine rhinotracheitis (IBR) virus antibodies using Avidin biotin ELISA.  A two-stage random sampling methodology was followed for the collection of samples. Results from the present study revealed that the overall seropositivity was reported around 29.50% while the highest and lowest seropositivity of 43.39% and 16.66% were reported in the states of Sikkim and Assam respectively, followed by Mizoram (42.16%), Manipur (29.86%) and Meghalaya (27.40%). Cattle of higher age groups showed the highest seropositivity compared to younger ones. A higher percent of IBR antibodies in cattle of NE states is a cause of concern and a detailed study on IBR prevalence comprising of a large number of the bovine population need to be undertaken

    Artificial intelligence and Machine Learning based Techniques in Analyzing the COVID-19 Gene Expression data: A Review

    Get PDF
    The novel Coronavirus associated with respiratory illness has become a new threat to human health as it is spreading very rapidly among the human population. Scientists and healthcare specialists throughout the world are still looking for a breakthrough technology to help combat the Covid-19 outbreak, despite the recent worldwide urgency. The use of Machine Learning (ML) and Artificial Intelligence (AI) in earlier epidemics has encouraged researchers by providing a fresh approach to combating the latest Coronavirus pandemic. This paper aims to comprehensively review the role of AI and ML for analysis of gene expressed data of COVID-1

    DETECTION OF TORQUE TENO SUS VIRUS (TTSUV) IN CLINICAL SPECIMENS OF PIGS WITH CLASSICAL SWINE FEVER, PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME, AND PORCINE CIRCOVIRUS 2 INFECTIONS

    Get PDF
    Torque teno sus viruses (TTSuVs) have never been implicated in the direct causation of any disease; however, their role as cofactors in the precipitation of certain disease conditions is gaining some support. Considering the spurt in the number of outbreaks of the porcine reproductive and respiratory syndrome (PRRS), porcine circovirus 2 (PCV2) infections, and classical swine fever (CSF) in India, we have investigated the extent of association of TTSuVs with the above said viruses by PCR. The TTsuVs were detected in 53% and 26.22% of CSFV-PRRSV-PCV-positive and apparently healthy negative tissue samples respectively. In serum, these were detected respectively in 29.60% and 21.42 % of CSFV-PRRSVinfected and apparently samples. The results obtained for the tissue samples are in concurrence with the observations of previous studies which reported a higher prevalence of TTSuVs in CSFV-PRRSV-PCV-positive clinical specimens as compared to the healthy ones. This is the first report of co-infection of TTSuVs with CSFV, PRRSV, and PCV from India. Future works are needed to establish the pathogenic role of TTSuVs through experimental studies

    QUASISPECIES FEATURE IN SARS-CoV-2

    Get PDF
    Since the identification of the SARS-CoV-2, genus Beta- Coronavirus, in January 2020, the virus quickly spread in less than 3 months to all continents with a susceptible human population of about a 7.9billion, and still in active circulation. In the process, it has accumulated mutations leading to genetic diversity. Regular emergence of variants of concern/significance in different ecology shows genetic heterogeneity in the base population of SARS-CoV-2 that is continuously expanding with the passage of the virus in the vast susceptible human population. Natural selection of mutant occurs frequently in a positive sense (+) single-stranded (ss) RNA virus upon replication in the host.  The Pressure of sub-optimal levels of virus-neutralizing antibodies and also innate immunity influence the process of genetic/ antigenic selection. The fittest of the mutants, that could be more than one, propagate and emerge as variants. The existence of different lineages, clades, and strains, as well as genetic heterogeneity of plaque purified virus population, justifies SARS-CoV-2 as ‘Quasispecies’ that refers to swarms of mutant sequences generated during replication of the viral genome, and all mutant sequences may not lead to virion. Viruses having a quasispecies nature may end up with progressive antigenic changes leading to antigenic plurality that is driven by ecology, and this phenomenon challenges vaccination-based control programs

    Ovine pulmonary adenocarcinoma (OPA) in sheep: an update on epidemiology, pathogenesis and diagnosis

    Get PDF
    Ovine pulmonary adenocarcinoma (OPA) is a spontaneous lung tumor in sheep caused by Jaagsiekte sheep retrovirus (JSRV) belonging to the Retroviridae. The primary aim of this review work is to give brief insights into the epidemiological aspects of OPA based on a meta-analysis of available research work. This review article also discussed pathogenesis, diagnostic tests and control strategies available for OPA in Sheep. This will help in developing future strategies for disease-free status in India. This disease is endemic in Europe, Africa, Asia, and American continents, causing significant economic losses due to chronic respiratory illness and persistent infections in flocks. The virus is unique among retroviruses with selective affinity to lungs and is the only virus known to cause spontaneous lung tumors in sheep. The incubation time ranges for sheep with naturally occurring OPA ranged from one to four years. There are two pathological forms of the disease: classical and atypical. At an early stage, OPA is difficult to detect in sheep due to a lack of preclinical diagnostic methods, as JSRV is poorly immunogenic and doesn't induce an immune response. PCR, histopathology, and immunohistochemistry are recommended methods for OIE diagnosis. To become a JSRV-free country, mandatory surveillance, detection, and removal of positive animals are required, as OPA is difficult to control due to a lack of vaccines and preclinical diagnostic tests. Due to its similar histological and molecular pathogenesis to that of human lung cancer, OPA is considered an ideal large animal model of human lung adenocarcinoma

    COVID-19 PANDEMIC: A SYSTEMATIC REVIEW ON THE CORONAVIRUSES OF ANIMALS AND SARS-CoV-2

    Get PDF
    Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta- CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans.  Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV); both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses

    Spatial and temporal analysis of haemorrhagic septicaemia outbreaks in India over three decades (1987–2016)

    Get PDF
    Haemorrhagic septicaemia (HS) is an economically important disease affecting cattle and buffaloes and the livelihoods of small-holder farmers that depend upon them. The disease is caused by Gram-negative bacterium, Pasteurella multocida, and is considered to be endemic in many states of India with more than 25,000 outbreaks in the past three decades. Currently, there is no national policy for control of HS in India. In this study, we analysed thirty year (1987–2016) monthly data on HS outbreaks using different statistical and mathematical methods to identify spatial variability and temporal patterns (seasonality, periodicity). There was zonal variation in the trend and seasonality of HS outbreaks. Overall, South zone reported maximum proportion of the outbreaks (70.2%), followed by East zone (7.2%), Central zone (6.4%), North zone (5.6%), West zone (5.5%) and North-East zone (4.9%). Annual state level analysis indicated that the reporting of HS outbreaks started at different years independently and there was no apparent transmission between the states. The results of the current study are useful for the policy makers to design national control programme on HS in India and implement state specific strategies. Further, our study and strategies could aid in implementation of similar approaches in HS endemic tropical countries around the world

    A thirty-year time series analyses identifies coherence between oscillations in anthrax outbreaks and El Niño in Karnataka, India

    Get PDF
    Anthrax is an economically important zoonotic disease affecting both livestock and humans. The disease is caused by a spore forming bacterium, Bacillus anthracis, and is considered endemic to the state of Karnataka, India. It is critical to quantify the role of climatic factors in determining the temporal pattern of anthrax outbreaks, so that reliable forecasting models can be developed. These models will aid in establishing public health surveillance and guide strategic vaccination programs, which will reduce the economic loss to farmers, and prevent the spill-over of anthrax from livestock to humans. In this study, correlation and coherence between time series of anthrax outbreaks in livestock (1987–2016) and meteorological variables and Sea Surface Temperature anomalies (SST) were identified using a combination of cross-correlation analyses, spectral analyses (wavelets and empirical mode decomposition) and further quantified using a Bayesian time series regression model accounting for temporal autocorrelation. Monthly numbers of anthrax outbreaks were positively associated with a lagged effect of rainfall and wet day frequency. Long-term periodicity in anthrax outbreaks (approximately 6–8 years) was coherent with the periodicity in SST anomalies and outbreak numbers increased with decrease in SST anomalies. These findings will be useful in planning long-term anthrax prevention and control strategies in Karnataka state of India

    Research Article A new Informatics Framework for Evaluating the Codon Usage Metrics, Evolutionary Models and Phylogeographic reconstruction of Tomato yellow leaf curl virus (TYLCV) in different regions of Asian countries

    Get PDF
    Tomato yellow leaf curl virus (TYLCV) is a major devastating viral disease, majorly affecting the tomato production globally. The disease is majorly transmitted by the Whitefly. The Begomovirus (TYLCV) having a six major protein coding genes, among them the C1/AC1 is evidently associated with viral replication. Owing to immense role of C1/AC1 gene, the present study is an initial effort to elucidate the factors shaping the codon usage bias and evolutionary pattern of TYLCV-C1/AC1 gene in five major Asian countries. Based on publically available nucleotide sequence data the Codon usage pattern, Evolutionary and Phylogeographic reconstruction was carried out. The study revealed the presence of significant variation between the codon bias indices in all the selected regions. Implying that the codon usage pattern indices (eNC, CAI, RCDI, GRAVY, Aromo) are seriously affected by selection and mutational pressure, taking a supremacy in shaping the codon usage bias of viral gene. Further, the tMRCA age was 1853, 1939, 1855, 1944, 1828 for China, India, Iran, Oman and South Korea, respectively for TYLCV-C1/AC1 gene. The integrated analysis of Codon usage bias, Evolutionary rate and Phylogeography analysis in viruses signifies the positive role of selection and mutational pressure among the selected regions for TYLCV (C1/AC1) gene
    corecore