1 research outputs found

    Thermally Activated D<sub>2</sub> Emission upon Decomposition of Thin Deuterofullerene Films on Au(111)

    No full text
    We have studied the formation and thermal properties of thin, deuterofullerene-containing films on Au(111) under ultrahigh vacuum conditions. The films were prepared in situ by exposure of predeposited C<sub>60</sub> layers to a flux of atomic deuterium. With increasing deuterium dose, a D + C<sub>60</sub> → C<sub>60</sub>D<sub><i>x</i></sub> reaction front propagates through the fullerene film toward the gold surface. Heating the resulting deuterofullerene-containing films to >600 K leads to desorption of predominantly C<sub>60</sub> and C<sub>60</sub>D<sub><i>x</i></sub>. Interestingly, some D<sub>2</sub> is also evolved while a significant fraction of the carbon initially deposited is left on the surface as nondesorbable residue. This is in contrast to analogous deuterofullerene-containing films prepared on graphite, which sublime completely but do not measurably evolve D<sub>2</sub>, suggesting that the gold surface can act as a catalyst for D<sub>2</sub> formation. To explore this further, we have systematically studied (i) the thermal properties of C<sub>60</sub>/Au­(111) reference films, (ii) the reaction of C<sub>60</sub>/Au­(111) films with D atoms, and (iii) the heating-induced degradation of deuterofullerene-containing films on Au(111). In particular, we have recorded temperature-resolved mass spectra of the desorbing species (sublimation maps) as well as performed ultraviolet photoionization spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and scanning tunneling microscopy measurements of the surfaces at various stages of study. We infer that heating deuterofullerene-containing films generates mobile deuterium atoms which can recombine to form molecular deuterium either at the gold surface or on fullerene oligomers in direct contact with it
    corecore