58 research outputs found
Polymer Maximum Drag Reduction: A Unique Transitional State
The upper bound of polymer drag reduction is identified as a unique
transitional state between laminar and turbulent flow corresponding to the
onset of the nonlinear breakdown of flow instabilities
Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow
We investigate the dynamics of the two-dimensional periodic Kolmogorov flow
of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct
numerical simulations. Above a critical Weissenberg number the flow displays a
transition from stationary to randomly fluctuating states, via periodic ones.
The increasing complexity of the flow in both time and space at progressively
higher values of elasticity accompanies the establishment of mixing features.
The peculiar dynamical behavior observed in the simulations is found to be
related to the appearance of filamental propagating patterns, which develop
even in the limit of very small inertial non-linearities, thanks to the
feedback of elastic forces on the flow.Comment: 10 pages, 14 figure
Two-dimensional elastic turbulence
We investigate the effect of polymer additives on a two-dimensional
Kolmogorov flow at very low Reynolds numbers by direct numerical simulations of
the Oldroyd-B viscoelastic model. We find that above the elastic instability
threshold the flow develops the elastic turbulence regime recently observed in
experiments. We observe that both the turbulent drag and the Lyapunov exponent
increase with Weissenberg, indicating the presence of a disordered,
turbulent-like mixing flow. The energy spectrum develops a power-law scaling
range with an exponent close to the experimental and theoretical expectations
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Solitary coherent structures in viscoelastic shear flow: computation and mechanism
Starting from stationary bifurcations in Couette-Dean flow, we compute
nontrivial stationary solutions in inertialess viscoelastic circular Couette
flow. These solutions are strongly localized vortex pairs, exist at arbitrarily
large wavelengths, and show hysteresis in the Weissenberg number, similar to
experimentally observed ``diwhirl'' patterns. Based on the computed velocity
and stress fields, we elucidate a heuristic, fully nonlinear mechanism for
these flows. We propose that these localized, fully nonlinear structures
comprise fundamental building blocks for complex spatiotemporal dynamics in the
flow of elastic liquids.Comment: 5 pages text and 4 figures. Submitted to Physical Review Letter
Microdevices for extensional rheometry of low viscosity elastic liquids : a review
Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations
The shear viscosity of carbon fibre suspension and its application for fibre length measurement
The viscosity of short carbon fibre suspensions in glycerol aqueous solution was measured using a bespoke vane-in-cup viscometer, where the carbon fibre has an aspect ratio from 450 to 2209. In the semi-concentrated regime, nL3 ranging from 20 to 4400, the suspensions demonstrated strong shear-thinning characteristics particularly at higher concentrations. The shear-thinning characteristic is strongly related to the crowding factor proposed by Kerekes, indicating that non-hydrodynamic interactions occur in the suspensions. The influence of fibre bending on viscosity emerges when the bending ratio is lower than 0.0028. An empirical model based on transient network formation and rupture was proposed and used to correlate the relative viscosity with fibre concentration nL3 and shear rate. Based on the model, a viscosity method is established to analyse the fibre length by measuring the viscosity of the fibre suspension using a bespoke vane-in-cup viscometer
Recent experimental probes of shear banding
Recent experimental techniques used to investigate shear banding are
reviewed. After recalling the rheological signature of shear-banded flows, we
summarize the various tools for measuring locally the microstructure and the
velocity field under shear. Local velocity measurements using dynamic light
scattering and ultrasound are emphasized. A few results are extracted from
current works to illustrate open questions and directions for future research.Comment: Review paper, 23 pages, 11 figures, 204 reference
- …