1,571 research outputs found

    The Effect of Stars on the Dark Matter Spike Around a Black Hole: A Tale of Two Treatments

    Full text link
    We revisit the role that gravitational scattering off stars plays in establishing the steady-state distribution of collisionless dark matter (DM) around a massive black hole (BH). This is a physically interesting problem that has potentially observable signatures, such as γ\gamma-rays from DM annihilation in a density spike. The system serves as a laboratory for comparing two different dynamical approaches, both of which have been widely used: a Fokker-Planck treatment and a two-component conduction fluid treatment. In our Fokker-Planck analysis we extend a previous analytic model to account for a nonzero flux of DM particles into the BH, as well as a cut-off in the distribution function near the BH due to relativistic effects or, further out, possible DM annihilation. In our two-fluid analysis, following an approximate analytic treatment, we recast the equations as a "heated Bondi accretion" problem and solve the equations numerically without approximation. While both the Fokker-Planck and two-fluid methods yield basically the same DM density and velocity dispersion profiles away from the boundaries in the spike interior, there are other differences, especially the determination of the DM accretion rate. We discuss limitations of the two treatments, including the assumption of an isotropic velocity dispersion.Comment: 12 pages, 6 figure

    The Final Fate of Binary Neutron Stars: What Happens After the Merger?

    Get PDF
    The merger of two neutron stars usually produces a remnant with a mass significantly above the single (nonrotating) neutron star maximum mass. In some cases, the remnant will be stabilized against collapse by rapid, differential rotation. MHD-driven angular momentum transport eventually leads to the collapse of the remnant's core, resulting in a black hole surrounded by a massive accretion torus. Here we present simulations of this process. The plausibility of generating short duration gamma ray bursts through this scenario is discussed.Comment: 3 pages. To appear in the Proceedings of the Eleventh Marcel Grossmann Meeting, Berlin, Germany, 23-29 July 2006, World Scientific, Singapore (2007

    Magnetic Braking and Viscous Damping of Differential Rotation in Cylindrical Stars

    Full text link
    Differential rotation in stars generates toroidal magnetic fields whenever an initial seed poloidal field is present. The resulting magnetic stresses, along with viscosity, drive the star toward uniform rotation. This magnetic braking has important dynamical consequences in many astrophysical contexts. For example, merging binary neutron stars can form "hypermassive" remnants supported against collapse by differential rotation. The removal of this support by magnetic braking induces radial fluid motion, which can lead to delayed collapse of the remnant to a black hole. We explore the effects of magnetic braking and viscosity on the structure of a differentially rotating, compressible star, generalizing our earlier calculations for incompressible configurations. The star is idealized as a differentially rotating, infinite cylinder supported initially by a polytropic equation of state. The gas is assumed to be infinitely conducting and our calculations are performed in Newtonian gravitation. Though highly idealized, our model allows for the incorporation of magnetic fields, viscosity, compressibility, and shocks with minimal computational resources in a 1+1 dimensional Lagrangian MHD code. Our evolution calculations show that magnetic braking can lead to significant structural changes in a star, including quasistatic contraction of the core and ejection of matter in the outermost regions to form a wind or an ambient disk. These calculations serve as a prelude and a guide to more realistic MHD simulations in full 3+1 general relativity.Comment: 20 pages, 19 figures, 3 tables, AASTeX, accepted by Ap

    Collapse of Uniformly Rotating Stars to Black Holes and the Formation of Disks

    Full text link
    Simulations in general relativity show that the outcome of collapse of a marginally unstable, uniformly rotating star spinning at the mass-shedding limit depends critically on the equation of state. For a very stiff equation of state, which is likely to characterize a neutron star, essentially all of the mass and angular momentum of the progenitor are swallowed by the Kerr black hole formed during the collapse, leaving nearly no residual gas to form a disk. For a soft equation of state with an adiabatic index \Gamma - 4/3 << 1, which characterizes a very massive or supermassive star supported predominantly by thermal radiation pressure, as much as 10% of the mass of the progenitor avoids capture and goes into a disk about the central hole. We present a semi-analytic calculation that corroborates these numerical findings and shows how the final outcome of such a collapse may be determined from simple physical considerations. In particular, we employ a simple energy variational principle with an approximate, post-Newtonian energy functional to determine the structure of a uniformly rotating, polytropic star at the onset of collapse as a function of polytropic index n, where \Gamma = 1+1/n. We then use this data to calculate the mass and spin of the final black hole and ambient disk. We show that the fraction of the total mass that remains in the disk falls off sharply as 3-n (equivalently, \Gamma - 4/3) increases.Comment: 11 pages, 2 figures, 2 tables, AASTeX; accepted to appear in The Astrophysical Journa
    corecore