9,856 research outputs found
Frequency-Domain Coherent Control of Femtosecond Two-Photon Absorption: Intermediate-Field vs. Weak-Field Regime
Coherent control of femtosecond two-photon absorption in the
intermediate-field regime is analyzed in detail in the powerful frequency
domain using an extended 4th-order perturbative description. The corresponding
absorption is coherently induced by the weak-field non-resonant two-photon
transitions as well as by four-photon transitions involving three absorbed
photons and one emitted photons. The interferences between these two groups of
transitions lead to a difference between the intermediate-field and weak-field
absorption dynamics. The corresponding interference nature (constructive or
destructive) strongly depends on the detuning direction of the pulse spectrum
from half the two-photon transition frequency. The model system of the study is
atomic sodium, for which both experimental and theoretical results are
obtained. The detailed understanding obtained here serves as a basis for
coherent control with rationally-shaped femtosecond pulses in a regime of
sizable absorption yields.Comment: 25 pages, 5 figure
Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution
Gravitational wave sources are a promising cosmological standard candle
because their intrinsic luminosities are determined by fundamental physics (and
are insensitive to dust extinction). They are, however, affected by weak
lensing magnification due to the gravitational lensing from structures along
the line of sight. This lensing is a source of uncertainty in the distance
determination, even in the limit of perfect standard candle measurements. It is
commonly believed that the uncertainty in the distance to an ensemble of
gravitational wave sources is limited by the standard deviation of the lensing
magnification distribution divided by the square root of the number of sources.
Here we show that by exploiting the non-Gaussian nature of the lensing
magnification distribution, we can improve this distance determination,
typically by a factor of 2--3; we provide a fitting formula for the effective
distance accuracy as a function of redshift for sources where the lensing noise
dominates.Comment: matches PRD accepted version (expanded description of the
cosmological parameter space + minor changes
Model-based Cognitive Neuroscience: Multifield Mechanistic Integration in Practice
Autonomist accounts of cognitive science suggest that cognitive model building and theory construction (can or should) proceed independently of findings in neuroscience. Common functionalist justifications of autonomy rely on there being relatively few constraints between neural structure and cognitive function (e.g., Weiskopf, 2011). In contrast, an integrative mechanistic perspective stresses the mutual constraining of structure and function (e.g., Piccinini & Craver, 2011; Povich, 2015). In this paper, I show how model-based cognitive neuroscience (MBCN) epitomizes the integrative mechanistic perspective and concentrates the most revolutionary elements of the cognitive neuroscience revolution (Boone & Piccinini, 2016). I also show how the prominent subset account of functional realization supports the integrative mechanistic perspective I take on MBCN and use it to clarify the intralevel and interlevel components of integration
Iterative algorithm for reconstruction of entangled states
An iterative algorithm for the reconstruction of an unknown quantum state
from the results of incompatible measurements is proposed. It consists of
Expectation-Maximization step followed by a unitary transformation of the
eigenbasis of the density matrix. The procedure has been applied to the
reconstruction of the entangled pair of photons.Comment: 4 pages, no figures, some formulations changed, a minor mistake
correcte
Field-induced 3- and 2-dimensional freezing in a quantum spin liquid
Field-induced commensurate transverse magnetic ordering is observed in the
Haldane-gap compound \nd by means of neutron diffraction. Depending on the
direction of applied field, the high-field phase is shown to be either a
3-dimensional ordered N\'{e}el state or a short-range ordered state with
dominant 2-dimensional spin correlations. The structure of the high-field phase
is determined, and properties of the observed quantum phase transition are
discussed.Comment: 4 pages 3 figure
Phase coexistence in proton glass
Proton glasses are crystals of composition M{sub 1{minus}x}(NW{sub 4}){sub x}W{sub 2}AO{sub 4}, where M = K,Rb, W = H,D, A = P,As. For x = 0 there is a ferroelectric (FE) transition, while for x = 1 there is an antiferroelectric (AFE) transition. In both cases, the transition is from a paraelectric (PE) state of tetragonal structure with dynamically disordered hydrogen bonds to an ordered state of orthorhombic structure. For an intermediate x range there is no transition, but the hydrogen rearrangements slow down, and eventually display nonergodic behavior characteristic of glasses. The authors and other have shown from spontaneous polarization, dielectric permittivity, nuclear magnetic resonance, and neutron diffraction experiments that for smaller x there is coexistence of ferroelectric and paraelectric phases, and for larger x there is coexistence of antiferroelectric and paraelectric phases. The authors present a method for analytically describing this coexistence, and the degree to which this coexistence is spatial or temporal
Spatial field correlation, the building block of mesoscopic fluctuations
The absence of self averaging in mesoscopic systems is a consequence of
long-range intensity correlation. Microwave measurements suggest and
diagrammatic calculations confirm that the correlation function of the
normalized intensity with displacement of the source and detector,
and , respectively, can be expressed as the sum of three terms, with
distinctive spatial dependences. Each term involves only the sum or the product
of the square of the field correlation function, . The
leading-order term is the product, the next term is proportional to the sum.
The third term is proportional to .Comment: Submitted to PR
The bloodstream differentiation - division of Trypanosoma brucei studied using mitochondrial markers
In the bloodstream of its mammalian host, the African trypanosome Trypanosoma brucei undergoes a life cycle stage differentiation from a long, slender form to a short, stumpy form. This involves three known major events: exit from a proliferative cell cycle, morphological change and mitochondrial biogenesis. Previously, models have been proposed accounting for these events (Matthews & Gull 1994a). Refinement of, and discrimination between, these models has been hindered by a lack of stage-regulated antigens useful as markers at the single-cell level. We have now evaluated a variety of cytological markers and applied them to investigate the coordination of phenotypic differentiation and cell cycle arrest. Our studies have focused on the differential expression of the mitochondrial enzyme dihydrolipoamide dehydrogenase relative to the differentiation-division of bloodstream trypanosomes. The results implicate a temporal order of events: commitment, division, phenotypic differentiation
Squashed States of Light: Theory and Applications to Quantum Spectroscopy
Using a feedback loop it is possible to reduce the fluctuations in one
quadrature of an in-loop field without increasing the fluctuations in the
other. This effect has been known for a long time, and has recently been called
``squashing'' [B.C. Buchler et al., Optics Letters {\bf 24}, 259 (1999)], as
opposed to the ``squeezing'' of a free field in which the conjugate
fluctuations are increased. In this paper I present a general theory of
squashing, including simultaneous squashing of both quadratures and
simultaneous squeezing and squashing. I show that a two-level atom coupled to
the in-loop light feels the effect of the fluctuations as calculated by the
theory. In the ideal limit of light squeezed in one quadrature and squashed in
the other, the atomic decay can be completely suppressed.Comment: 8 pages plus one figure. Submitted to JEOS-B for Dan Walls Special
Issu
- …