28,027 research outputs found
Monomolecular contamination of optical surfaces
Ultraviolet measurements of oil contamination in optical mirror
Multiple-Access Bosonic Communications
The maximum rates for reliably transmitting classical information over
Bosonic multiple-access channels (MACs) are derived when the transmitters are
restricted to coherent-state encodings. Inner and outer bounds for the ultimate
capacity region of the Bosonic MAC are also presented. It is shown that the
sum-rate upper bound is achievable with a coherent-state encoding and that the
entire region is asymptotically achievable in the limit of large mean input
photon numbers.Comment: 11 pages, 5 figures, corrected two figures, accepted for publication
in Phys. Rev.
Reflective Ghost Imaging through Turbulence
Recent work has indicated that ghost imaging may have applications in
standoff sensing. However, most theoretical work has addressed
transmission-based ghost imaging. To be a viable remote-sensing system, the
ghost imager needs to image rough-surfaced targets in reflection through long,
turbulent optical paths. We develop, within a Gaussian-state framework,
expressions for the spatial resolution, image contrast, and signal-to-noise
ratio of such a system. We consider rough-surfaced targets that create fully
developed speckle in their returns, and Kolmogorov-spectrum turbulence that is
uniformly distributed along all propagation paths. We address both classical
and nonclassical optical sources, as well as a computational ghost imager.Comment: 13 pages, 3 figure
A Comparison of Quartz Crystal Microbalance Measurements with Mass Spectrometer Determinations
An experimental program was undertaken in which mass accretion rates, as determined by a liquid nitrogen cooled quartz crystal microbalance, were compared with the mass flux rates, as determined by both a cycloidal type and a quadrupole type residual gas analyzer for five simple materials. The data indicate a high degree of correlation between these instruments insofar as the shape of the curves. There are large variations however among the absolute values
Dark energy: a quantum fossil from the inflationary Universe?
The discovery of dark energy (DE) as the physical cause for the accelerated
expansion of the Universe is the most remarkable experimental finding of modern
cosmology. However, it leads to insurmountable theoretical difficulties from
the point of view of fundamental physics. Inflation, on the other hand,
constitutes another crucial ingredient, which seems necessary to solve other
cosmological conundrums and provides the primeval quantum seeds for structure
formation. One may wonder if there is any deep relationship between these two
paradigms. In this work, we suggest that the existence of the DE in the present
Universe could be linked to the quantum field theoretical mechanism that may
have triggered primordial inflation in the early Universe. This mechanism,
based on quantum conformal symmetry, induces a logarithmic,
asymptotically-free, running of the gravitational coupling. If this evolution
persists in the present Universe, and if matter is conserved, the general
covariance of Einstein's equations demands the existence of dynamical DE in the
form of a running cosmological term whose variation follows a power law of the
redshift.Comment: LaTeX, 14 pages, extended discussion. References added. Accepted in
J. Phys. A: Mathematical and Theoretica
Two-mode heterodyne phase detection
We present an experimental scheme that achieves ideal phase detection on a
two-mode field. The two modes and are the signal and image band modes
of an heterodyne detector, with the field approaching an eigenstate of the
photocurrent . The field is obtained by means of a
high-gain phase-insensitive amplifier followed by a high-transmissivity
beam-splitter with a strong local oscillator at the frequency of one of the two
modes.Comment: 3 pages, 1 figur
Vegetative and geologic mapping of the western Seward Peninsula, Alaska, based on ERTS-1 imagery
ERTS-1 scene 1009-22095 (Western Seward Peninsula, Alaska) has been studied, partly as a training exercise, to evaluate whether direct visual examination of individual and custom color-composite prints can provide new information on the vegetation and geology of this relatively well known area of Alaska. The vegetation analysis reveals seven major vegetation types, only four of which are described on existing vegetation maps. In addition, the ERTS analysis provides greater detail than the existing maps on the areal distribution of vegetation types. The geologic analysis demonstrates that most of the major rock units and geomorphic boundaries shown on the available geologic maps could also be identified on the ERTS data. Several major high-angle faults were observed, but the zones of thrust faults which are much less obvious
- …