1,807 research outputs found

    Forward modelling of brightness variations in Sun-like stars I. Emergence and surface transport of magnetic flux

    Full text link
    The latitudinal distribution of starspots deviates from the solar pattern with increasing rotation rate. Numerical simulations of magnetic flux emergence and transport can help model the observed stellar activity patterns and the associated brightness variations. We set up a composite model for the processes of flux emergence and transport on Sun-like stars, to simulate stellar brightness variations for various levels of magnetic activity and rotation rates. Assuming that the distribution of magnetic flux at the base of the convection zone follows solar scaling relations, we calculate the emergence latitudes and tilt angles of bipolar regions at the surface for various rotation rates, using thin-flux-tube simulations. Taking these two quantities as input to a surface flux transport SFT model, we simulate the diffusive-advective evolution of the radial field at the stellar surface, including effects of active region nesting. As the rotation rate increases, (1) magnetic flux emerges at higher latitudes and an inactive gap opens around the equator, reaching a half-width of 2020^\circ for 8Ω8\Omega_\odot, (2) the tilt angles of freshly emerged bipolar regions show stronger variations with latitude. Polar spots can form at 8Ω8\Omega_\odot by accumulation of follower-polarity flux from decaying bipolar regions. From 4Ω4\Omega_\odot to 8Ω8\Omega_\odot, the maximum spot coverage changes from 3 to 20%, respectively, compared to 0.4% for the solar model. Nesting of activity can lead to strongly non-axisymmetric spot distributions. On Sun-like stars rotating at 8Ω8\Omega_\odot (Prot3P_{\rm rot}\simeq 3 days), polar spots can form, owing to higher levels of flux emergence rate and tilt angles. Defining spots by a threshold field strength yields global spot coverages that are roughly consistent with stellar observations.Comment: 16 pages, 13 figures. Astron. & Astrophys. (in press); minor language corrections mad

    Probing Pseudogap by Josephson Tunneling

    Full text link
    We propose here an experiment aimed to determine whether there are superconducting pairing fluctuations in the pseudogap regime of the high-TcT_c materials. In the experimental setup, two samples above TcT_c are brought into contact at a single point and the differential AC conductivity in the presence of a constant applied bias voltage between the samples, VV, should be measured. We argue the the pairing fluctuations will produce randomly fluctuating Josephson current with zero mean, however the current-current correlator will have a characteristic frequency given by Josephson frequency ωJ=2eV/\omega_J = 2 e V /\hbar. We predict that the differential AC conductivity should have a peak at the Josephson frequency with the width determined by the phase fluctuations time.Comment: 4 pages, 2 eps figure

    Perturbation Theory for the Rosenzweig-Porter Matrix Model

    Full text link
    We study an ensemble of random matrices (the Rosenzweig-Porter model) which, in contrast to the standard Gaussian ensemble, is not invariant under changes of basis. We show that a rather complete understanding of its level correlations can be obtained within the standard framework of diagrammatic perturbation theory. The structure of the perturbation expansion allows for an interpretation of the level structure on simple physical grounds, an aspect that is missing in the exact analysis (T. Guhr, Phys. Rev. Lett. 76, 2258 (1996), T. Guhr and A. M\"uller-Groeling, cond-mat/9702113).Comment: to appear in PRE, 5 pages, REVTeX, 2 figures, postscrip

    First Observation of barB0 to D*0 pi+pi+pi-pi- Decays

    Full text link
    We report on the observation of B0bar -> D*0 pi+ pi+ pi- pi- decays. The branching ratio is (0.30 +/- 0.07 +/- 0.06)%. Interest in this particular mode was sparked by Ligeti, Luke and Wise who propose it as a way to check the validity of factorization tests in B0bar -> D*+ pi+ pi- pi- pi0 decays.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, Version to appear in Phys. Rev.

    Moments of the B Meson Inclusive Semileptonic Decay Rate using Neutrino Reconstruction

    Get PDF
    We present a measurement of the composition of B meson inclusive semileptonic decays using 9.4 fb^-1 of e^+e^- data taken with the CLEO detector at the Upsilon(4S) resonance. In addition to measuring the charged lepton kinematics, the neutrino four-vector is inferred using the hermiticity of the detector. We perform a maximum likelihood fit over the full three-dimensional differential decay distribution for the fractional contributions from the B -> X_c l nu processes with X_c = D, D*, D**, and nonresonant X_c, and the process B -> X_u l nu. From the fit results we extract the first and second moments of the M_X^2 and q^2 distributions with minimum lepton-energy requirements of 1.0 GeV and 1.5 GeV. We find = 0.456 +- 0.014 +- 0.045 +- 0.109 (GeV/c^2)^2 with a minimum lepton energy of 1.0 GeV and = 0.293 +- 0.012 +- 0.033 +- 0.048 (GeV/c^2)^2 with minimum lepton energy of 1.5 GeV. The uncertainties are from statistics, detector systematic effects, and model dependence, respectively. As a test of the HQET and OPE calculations, the results for the M^X_c moment as a function of the minimum lepton energy requirement are compared to the predictions.Comment: 26 pages postscript, als available through http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with following preprint hep-ex/0403053

    Resonant Structure of τ3ππ0ντ\tau\to 3\pi\pi^{0}\nu_{\tau} and τωπντ\tau\to \omega\pi\nu_{\tau} Decays

    Full text link
    The resonant structure of the four pion final state in the decay τ3ππ0ντ\tau \to 3\pi\pi^0\nu_\tau is analyzed using 4.27 million τ+τ\tau^+\tau^- pairs collected by the CLEO II experiment. We search for second class currents in the decay τωπντ\tau \to \omega\pi\nu_\tau using spin-parity analysis and establish an upper limit on the non-vector current contribution. The mass and width of the ρ\rho' resonance are extracted from a fit to the τωπντ\tau \to \omega\pi\nu_\tau spectral function. A partial wave analysis of the resonant structure of the τ3ππ0ντ\tau \to 3\pi\pi^0\nu_\tau decay is performed; the spectral decomposition of the four pion system is dominated by the ωπ\omega\pi and a1πa_1 \pi final states.Comment: 34 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Hadronic Structure in the Decay τππ0ντ\tau^{-}\to \pi^{-}\pi^{0}\nu_{\tau}

    Full text link
    We report on a study of the invariant mass spectrum of the hadronic system in the decay tau- -> pi- pi0 nu_tau. This study was performed with data obtained with the CLEO II detector operating at the CESR e+ e- collider. We present fits to phenomenological models in which resonance parameters associated with the rho(770) and rho(1450) mesons are determined. The pi- pi0 spectral function inferred from the invariant mass spectrum is compared with data on e+ e- -> pi+ pi- as a test of the Conserved Vector Current theorem. We also discuss the implications of our data with regard to estimates of the hadronic contribution to the muon anomalous magnetic moment.Comment: 39 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    corecore