204 research outputs found

    Visualizing choriocapillaris using swept source optical coherence tomography angiography with various probe beam sizes

    Get PDF
    Imaging choriocapillaris (CC) is a long-term challenge for commercial OCT angiography (OCTA) systems due to limited transverse resolution. Effects of transverse resolution on the visualization of a CC microvascular network are explored and demonstrated in this paper. We use three probe beams with sizes of ~1.12 mm, ~2.51 mm and ~3.50 mm at the pupil plane, which deliver an estimated transverse resolution at the retina of 17.5 µm, 8.8 µm and 7.0 µm, respectively, to investigate the ability of OCTA to resolve the CC capillary vessels. The complex optical microangiography algorithm is applied to extract blood flow in the CC slab. Mean retinal pigment epithelium (RPE) to CC (RPE-CC) distance, mean CC inter-vascular spacing and the magnitude in the radially-averaged power spectrum are quantified. We demonstrate that a clearer CC lobular capillary network is resolved in the angiograms provided by a larger beam size. The image contrast of the CC angiogram with a large beam size of 3.50 mm is 114% higher than that with a small beam size of 1.12 mm. While the measurements of the mean RPE-CC distance and CC inter-vascular spacing are almost consistent regardless of the beam sizes, they are more reliable and stable with the larger beam size of 3.50 mm. We conclude that the beam size is a key parameter for CC angiography if the purpose of the investigation is to visualize the individual CC capillaries.</p

    Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

    Get PDF
    Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio ([Formula: see text] gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media

    Sex modifies APOE ε4 dose effect on brain tau deposition in cognitively impaired individuals

    Get PDF
    Recent studies in cognitively unimpaired elderly individuals suggest that the APOE ε4 allele exerts a dosage-dependent effect on brain tau deposition. The aim of this study was to investigate sex differences in APOE ε4 gene dosage effects on brain tau deposition in cognitively impaired individuals using quantitative 18F-flortaucipir PET. Preprocessed 18F-flortaucipir tau PET images, T1-weighted structural MRI, demographic information, global cortical amyloid-β burden measured by 18F-florbetapir PET, CSF total tau and phosphorylated tau measurements were obtained from the Alzheimer\u27s Disease Neuroimaging Initiative database. Two hundred and sixty-eight cognitively impaired individuals with 146 APOE ε4 non-carriers and 122 carriers (85 heterozygotes and 37 homozygotes) were included in the study. An iterative reblurred Van Cittert iteration partial volume correction method was applied to all downloaded PET images. Magnetic resonance images were used for PET spatial normalization. Twelve regional standardized uptake value ratios relative to the cerebellum were computed in standard space. APOE ε4 dosage × sex interaction effect on 18F-flortaucipir standardized uptake value ratios was assessed using generalized linear models and sex-stratified analysis. We observed a significant APOE ε4 dosage × sex interaction effect on tau deposition in the lateral temporal, posterior cingulate, medial temporal, inferior temporal, entorhinal cortex, amygdala, parahippocampal gyrus regions after adjusting for age and education level (P \u3c 0.05). The medial temporal, entorhinal cortex, amygdala and parahippocampal gyrus regions retained a significant APOE ε4 dosage × sex interaction effect on tau deposition after adjusting for global cortical amyloid-β (P \u3c 0.05). In sex-stratified analysis, there was no significant difference in tau deposition between female homozygotes and heterozygotes (P \u3e 0.05). In contrast, male homozygotes standardized uptake value ratios were significantly greater than heterozygotes or non-carriers throughout all 12 regions of interest (P \u3c 0.05). Female heterozygotes exhibited significantly increased tau deposition compared to male heterozygotes in the orbitofrontal, posterior cingulate, lateral temporal, inferior temporal, entorhinal cortex, amygdala and parahippocampal gyrus (P \u3c 0.05). Results from voxel-wise analysis were similar to the ones obtained from regions of interest analysis. Our findings indicate that an APOE ε4 dosage effect on brain region-specific tau deposition exists in males, but not females. These results have important clinical implications towards developing sex and genotype-guided therapeutics in Alzheimer\u27s disease and uncovers a potential explanation underlying differential APOE ε4-associated Alzheimer\u27s risk in males and females

    Screening of Polyvalent Phage-Resistant Escherichia coli Strains Based on Phage Receptor Analysis

    Get PDF
    Bacteria-based biotechnology processes are constantly under threat from bacteriophage infection, with phage contamination being a non-neglectable problem for microbial fermentation. The essence of this problem is the complex co-evolutionary relationship between phages and bacteria. The development of phage control strategies requires further knowledge about phage-host interactions, while the widespread use of Escherichia coli strain BL21 (DE3) in biotechnological processes makes the study of phage receptors in this strain particularly important. Here, eight phages infecting E. coli BL21 (DE3) via different receptors were isolated and subsequently identified as members of the genera T4virus, Js98virus, Felix01virus, T1virus, and Rtpvirus. Phage receptors were identified by whole-genome sequencing of phage-resistant E. coli strains and sequence comparison with wild-type BL21 (DE3). Results showed that the receptors for the isolated phages, designated vB_EcoS_IME18, vB_EcoS_IME253, vB_EcoM_IME281, vB_EcoM_IME338, vB_EcoM_IME339, vB_EcoM_IME340, vB_EcoM_IME341, and vB_EcoS_IME347 were FhuA, FepA, OmpF, lipopolysaccharide, Tsx, OmpA, FadL, and YncD, respectively. A polyvalent phage-resistant BL21 (DE3)-derived strain, designated PR8, was then identified by screening with a phage cocktail consisting of the eight phages. Strain PR8 is resistant to 23 of 32 tested phages including Myoviridae and Siphoviridae phages. Strains BL21 (DE3) and PR8 showed similar expression levels of enhanced green fluorescent protein. Thus, PR8 may be used as a phage resistant strain for fermentation processes. The findings of this study contribute significantly to our knowledge of phage-host interactions and may help prevent phage contamination in fermentation
    • …
    corecore