10 research outputs found

    Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil

    No full text
    Acid soils are characterized by deficiencies in essential nutrient elements, oftentimes phosphorus (P), along with toxicities of metal elements, such as aluminum (Al), manganese (Mn), and cadmium (Cd), each of which significantly limits crop production. In recent years, impressive progress has been made in revealing mechanisms underlying tolerance to high concentrations of Al, Mn, and Cd. Phosphorus is an essential nutrient element that can alleviate exposure to potentially toxic levels of Al, Mn, and Cd. In this review, recent advances in elucidating the genes responsible for the uptake, translocation, and redistribution of Al, Mn, and Cd in plants are first summarized, as are descriptions of the mechanisms conferring resistance to these toxicities. Then, literature highlights information on interactions of P nutrition with Al, Mn, and Cd toxicities, particularly possible mechanisms driving P alleviation of these toxicities, along with potential applications for crop improvement on acid soils. The roles of plant phosphate (Pi) signaling and associated gene regulatory networks relevant for coping with Al, Mn, and Cd toxicities, are also discussed. To develop varieties adapted to acid soils, future work needs to further decipher involved signaling pathways and key regulatory elements, including roles fulfilled by intracellular Pi signaling. The development of new strategies for remediation of acid soils should integrate the mechanisms of these interactions between limiting factors in acid soils

    Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil

    No full text
    Acid soils are characterized by deficiencies in essential nutrient elements, oftentimes phosphorus (P), along with toxicities of metal elements, such as aluminum (Al), manganese (Mn), and cadmium (Cd), each of which significantly limits crop production. In recent years, impressive progress has been made in revealing mechanisms underlying tolerance to high concentrations of Al, Mn, and Cd. Phosphorus is an essential nutrient element that can alleviate exposure to potentially toxic levels of Al, Mn, and Cd. In this review, recent advances in elucidating the genes responsible for the uptake, translocation, and redistribution of Al, Mn, and Cd in plants are first summarized, as are descriptions of the mechanisms conferring resistance to these toxicities. Then, literature highlights information on interactions of P nutrition with Al, Mn, and Cd toxicities, particularly possible mechanisms driving P alleviation of these toxicities, along with potential applications for crop improvement on acid soils. The roles of plant phosphate (Pi) signaling and associated gene regulatory networks relevant for coping with Al, Mn, and Cd toxicities, are also discussed. To develop varieties adapted to acid soils, future work needs to further decipher involved signaling pathways and key regulatory elements, including roles fulfilled by intracellular Pi signaling. The development of new strategies for remediation of acid soils should integrate the mechanisms of these interactions between limiting factors in acid soils

    Dicyandiamide has more inhibitory activities on nitrification than thiosulfate.

    No full text
    Dicyandiamide (DCD) and thiosulfates are two type of nitrification inhibitors (NIs) that have been widely used in agriculture to improve nitrogen (N) fertilizer use efficiency and mitigate negative effect of N on environment. Little information is available concerning the comparison of the efficacy of DCD and thiosulfate on N transformations in soil. The aim of this study was to compare the effects of DCD and thiosulfate (K2S2O3) on changes of NH4+-N, nitrification inhibition and N recovery in a latosolic red soil. An incubation experiment was conducted with four treatments of control (CK), N, N+DCD, and N+K2S2O3. Soil samples were collected periodically over 50 d to determine concentrations of mineral N, and the amoA gene abundance of ammonia monooxygenase (AMO) for ammonia-oxidizing bacteria (AOB) was estimated by qPCR after 10 d incubation. In the N treatment, 67.8% of the applied N as NH4+-N disappeared from the mineral N pool and only 2.7% and 30.8% of the applied N was accumulated as NO2--N and NO3--N, respectively. Addition of DCD and thiosulfate to the soil prevented NH4+-N disappearance by 63.0% and 13.6%, respectively. DCD suppressed the production of NO2--N by 97.41%, whereas thiosulfate increased accumulation of NO2--N by 14.6%. Application of N along with DCD and thiosulfate inhibited nitrification, respectively, by 72.6% and 33.1%, resulting in the delay of the nitrification process for 30 days and 10 days, respectively. Apparent N recovery in N treatment was 66.2%, which increased by 55.2% and 4.8% by DCD and thiosulfate, respectively. Numbers of AOB amoA gene copy was significantly inhibited by both DCD and thiosulfate, and the stronger inhibition induced by DCD than thiosulfate was recorded. Results indicated that both DCD and thiosulfate were effective inhibitors for NH4+-N oxidation, NO3--N production, mineral N losses and AOB growth. DCD showed a more pronounced effect on nitrification inhibition than thiosulfate

    Evaluation of the Effectiveness of a Nutrient Inhibitor Applied to High Cadmium-Risk Double-Cropped Rice Fields

    No full text
    【Objective】The study aimed to address the conspicuous problem of excessive cadmium (Cd) in rice by developing and applying a nutrient inhibitor in the field to evaluate its effectiveness in reducing Cd uptake by rice and improving soil nutrients.【Method】One about 3.33 hm2, high-risk, double-cropped rice field was selected as a demonstration area in each of three cities in the Pearl River Delta. The nutrient inhibitor was applied to the soil before rice seedling transplanting in both the early and late cropping seasons. Its impact on the mass fraction of Cd in brown rice from different rice varieties over both cropping seasons were studied and assessed, as well as its influence on soil properties.【Result】The results showed that the nutrient inhibitor did not significantly impact the early or late cropping season rice yields in any of the three demonstration areas. However, it did reduce the mass fraction of Cd in brown rice, with reduction ranging from 8.43% to 72.5%. The nutrient inhibitor influenced soil properties differently. Compared to the control area, the nutrient inhibitor increased the pH of the soil in the double-cropped rice fields of the three demonstration areas by 0.10~0.42 units. The nutrient inhibitor increased the mass fractions of soil exchangeable calcium (Ca), magnesium (Mg), and available silicon (Si) which reached peak increases of 66.2%, 109%, and 53.0% respectively. However, the nutrient inhibitor did not noticeably change the mass fraction of soil hydrolytic nitrogen (N). In the demonstration area Ⅰ and Ⅱ, the inhibitor improved the mass fractions of available phosphorus (P) and available potassium (K) with peak increases of 78.3% and 24.6%, respectively, while in the demonstration area Ⅲ, the inhibitor insignificantly changed them. The nutrient inhibitor significantly reduced the mass fraction of available Cd in the soil in the demonstration area Ⅰ by 4.9%~7.3%, but it had no significant effect on that in the demonstration area Ⅱ and Ⅲ.【Conclusion】The nutrient inhibitor has ability to decrease the Cd accumulation in brown rice, and its impact on soil macro and moderate nutrients, and Cd bioavailability differentiates along with some conditions, while the inhibitor does not adversely affect soil properties or rice yields. Therefore, the nutrient inhibitor has the potential for safe and effective application to high-risk Cd-contaminated rice fields in the Pearl River Delta region

    Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances

    No full text
    Water stress (drought and waterlogging) is severe abiotic stress to plant growth and development. Melatonin, a bioactive plant hormone, has been widely tested in drought situations in diverse plant species, while few studies on the role of melatonin in waterlogging stress conditions have been published. In the current review, we analyze the biostimulatory functions of melatonin on plants under both drought and waterlogging stresses. Melatonin controls the levels of reactive oxygen and nitrogen species and positively changes the molecular defense to improve plant tolerance against water stress. Moreover, the crosstalk of melatonin and other phytohormones is a key element of plant survival under drought stress, while this relationship needs further investigation under waterlogging stress. In this review, we draw the complete story of water stress on both sides—drought and waterlogging—through discussing the previous critical studies under both conditions. Moreover, we suggest several research directions, especially for waterlogging, which remains a big and vague piece of the melatonin and water stress puzzle

    Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals

    No full text
    Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate–glutathione (AsA–GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed
    corecore