31 research outputs found

    Dual-modality fibre optic probe for simultaneous ablation and ultrasound imaging

    Get PDF
    All-optical ultrasound (OpUS) is an emerging high resolution imaging paradigm utilising optical fibres. This allows both therapeutic and imaging modalities to be integrated into devices with dimensions small enough for minimally invasive surgical applications. Here we report a dual-modality fibre optic probe that synchronously performs laser ablation and real-time all-optical ultrasound imaging for ablation monitoring. The device comprises three optical fibres: one each for transmission and reception of ultrasound, and one for the delivery of laser light for ablation. The total device diameter is < 1 mm. Ablation monitoring was carried out on porcine liver and heart tissue ex vivo with ablation depth tracked using all-optical M-mode ultrasound imaging and lesion boundary identification using a segmentation algorithm. Ablation depths up to 2.1 mm were visualised with a good correspondence between the ultrasound depth measurements and visual inspection of the lesions using stereomicroscopy. This work demonstrates the potential for OpUS probes to guide minimally invasive ablation procedures in real time

    Miniaturised all-optical ultrasound probe for thrombus imaging

    Get PDF
    All-Optical Ultrasound (OpUS) has emerged as an imaging paradigm well-suited for minimally invasive procedures. In particular, OpUS has demonstrated potential in endovascular imaging due to its high degree of miniaturization and mechanical flexibility, high imaging resolution and immunity to electromagnetic interference. Here, we present the first human thrombus imaging using an OpUS device, which was performed on an extracted clot. The results demonstrate the feasibility of using OpUS for thrombus imaging, with the ultimate goal of guiding minimally invasive endovascular clot retrieval procedures

    Miniaturised dual-modality all-optical ultrasound probe for laser interstitial thermal therapy (LITT) monitoring

    Get PDF
    All-optical ultrasound (OpUS) has emerged as an imaging paradigm well-suited to minimally invasive imaging due to its ability to provide high resolution imaging from miniaturised fibre optic devices. Here, we report a fibre optic device capable of concurrent laser interstitial thermal therapy (LITT) and real-time in situ all-optical ultrasound imaging for lesion monitoring. The device comprised three optical fibres: one each for ultrasound transmission, reception and thermal therapy light delivery. This device had a total lateral dimension of &lt;1 mm and was integrated into a medical needle. Simultaneous LITT and monitoring were performed on ex vivo lamb kidney with lesion depth tracked using M-mode OpUS imaging. Using one set of laser energy parameters for LITT (5 W, 60 s), the lesion depth varied from 3.3 mm to 8.3 mm. In all cases, the full lesion depth could be visualised and measured with the OpUS images and there was a good statistical agreement with stereomicroscope images acquired after ablation (t=1.36, p=0.18). This work demonstrates the feasibility and potential of OpUS to guide LITT in tumour resection

    Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles

    Get PDF
    Candle-soot nanoparticles (CSNPs) have shown great promise for fabricating optical ultrasound (OpUS) transmitters. They have a facile, inexpensive synthesis whilst their unique, porous structure enables a fast heat diffusion rate which aids high-frequency ultrasound generation necessary for high-resolution clinical imaging. These composites have demonstrated high ultrasound generation performance showing clinically relevant detail, when applied as macroscale OpUS transmitters comprising both concave and planar surfaces, however, less research has been invested into the translation of this material's technology to fabricate fiber-optic transmitters for image guidance of minimally invasive interventions. Here, are reported two fabrication methods of nanocomposites composed of CSNPs embedded within polydimethylsiloxane (PDMS) deposited onto fiber-optic end-faces using two different optimized fabrication methods: “All-in-One” and “Direct Deposition.” Both types of nanocomposite exhibit a smooth, black domed structure with a maximum dome thickness of 50 µm, broadband optical absorption (>98% between 500 and 1400 nm) and both nanocomposites generated high peak-to-peak ultrasound pressures (>3 MPa) and wide bandwidths (>29 MHz). Further, high-resolution (<40 µm axial resolution) B-mode ultrasound imaging of ex vivo lamb brain tissue demonstrating how CSNP-PDMS OpUS transmitters can allow for high fidelity minimally invasive imaging of biological tissues is demonstrated

    Stability analysis of cylindrical shells using refined non-conforming rectangular cylindrical shell elements

    No full text
    The accuracy of stability analysis depends on the accuracy of both the element stiffness matrix and geometry stiffness matrix. Therefore, when carrying out the stability analysis of thin cylindrical shells using the finite element methods will require, firstly, a refined non-conforming rectangular curved cylindrical shell element RCSR4 is proposed according to the refined non-conforming FE method, in which both the C1 and C0 weak continuity conditions are satisfied and as a result, can ensure the convergence of computation. At the same time, a refined geometrical stiffness matrix is introduced to replace the standard consistent geometrical stiffness matrix. Simple expressions of the refined constant strain matrices with adjustable constants are introduced with respect to the weak continuity conditions. Numerical examples are presented to show that the present method can indeed improve the performance and the accuracy in stability analysis. Copyright © 2001 John Wiley and Sons, Ltd.link_to_subscribed_fulltex

    Comparative study on bulk and composite fibrous samples photophysical feature: Synthesis and characterization of a fluorine-containing Re(I) complex and its electrospinning fibers

    No full text
    This paper reported a diamine ligand 2-(4-fluorophenyl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (referred to as FPOZ) owing two typical electron-withdrawing moieties of an oxidiazole group and a fluorine atom, as well as its corresponding Re(I) complex Re(CO)3(FPOZ)Br. Geometric structure and electronic nature of Re(CO)3(FPOZ)Br were explored and discussed by single crystal analysis and theoretical calculation, which suggested that Re(CO)3(FPOZ)Br took a distorted octahedral coordination field. The onset electronic transitions owned a mixed character of metal-to-ligand-charge-transfer (MLCT) and ligand-to-ligand-charge-transfer (LLCT). Re(CO)3(FPOZ)Br was then doped into a polymer host. Photophysical difference between resulting composite fibers and bulk Re(CO)3(FPOZ)Br was carefully performed, so that the correlation between emissive performance and electron-withdrawing group/geometric relaxation could be investigated. It was found that the immobilization in polymer matrix could repress MLCT excited state geometric relaxation, leading to improved PL parameters such as emission blue shift, longer excited state lifetime and higher photostability. © 2015 Elsevier B.V. All rights reserved
    corecore