58 research outputs found

    General SIS diffusion process with indirect spreading pathways on a hypergraph

    Full text link
    While conventional graphs only characterize pairwise interactions, higher-order networks (hypergraph, simplicial complex) capture multi-body interactions, which is a potentially more suitable modeling framework for a complex real system. However, the introduction of higher-order interactions brings new challenges for the rigorous analysis of such systems on a higher-order network. In this paper, we study a series of SIS-type diffusion processes with both indirect and direct pathways on a directed hypergraph. In a concrete case, the model we propose is based on a specific choice (polynomial) of interaction function (how several agents influence each other when they are in a hyperedge). Then, by the same choice of interaction function, we further extend the system and propose a bi-virus competing model on a directed hypergraph by coupling two single-virus models together. Finally, the most general model in this paper considers an abstract interaction function under single-virus and bi-virus settings. For the single-virus model, we provide the results regarding healthy state and endemic equilibrium. For the bi-virus setting, we further give an analysis of the existence and stability of the healthy state, dominant endemic equilibria, and coexisting equilibria. All theoretical results are finally supported by some numerical examples

    A lectin gene is involved in the defense of Pleurotus ostreatus against the mite predator Tyrophagus putrescentiae

    Get PDF
    The storage mite, Tyrophagus putrescentiae, found worldwide in many habitats, is an important pest of edible mushrooms. Excessive chemical spraying for pest control has been linked to environmental pollution, health risks, insecticide resistance development, and food safety. Host resistance can be sustainable and cost-effective and provide effective and economical pest control. Previous studies have reported that the oyster mushroom Pleurotus ostreatus has evolved effective defense mechanisms against T. putrescentiae attack, but the underlying mechanism remains unclear. Here we report that a lectin gene from P. ostreatus mycelia, Polec2, induced fungal resistance to mite grazing. Polec2 belongs to a galectin-like lectin classification, encoding a protein with β-sandwith-fold domain. Overexpression of Polec2 in P. ostreatus led to activation of the reactive oxygen species (ROS)/mitogen-activated protein kinases (MAPKs) signaling pathway, salicylic acid (SA), and jasmonate (JA) biosynthesis. The activation resulted in bursts of antioxidant activities of catalases (CAT), peroxidases (POD), superoxide dismutases (SOD), and increased production of SA, JA, jasmonic acid-isoleucine (JA-Ile) and jasmonic acid methyl ester (MeJA), accompanied by reduced T. putrescentiae feeding and suppressed its population. We also provide an overview of the phylogenetic distribution of lectins across 22 fungal genomes. Our findings shed light on the molecular mechanisms of P. ostreatus’ defense against the mite predator and will be useful in investigating the molecular basis of fungi-fungivory interactions and gene mining for pest-resistance genes

    Chlorogenic Acid Ameliorates Damage Induced by Fluorene-9-Bisphenol in Porcine Sertoli Cells

    Get PDF
    4,4′-(9-Fluorenylidene) diphenol (BPFL, also known as BHPF and fluorene-9-bisphenol) is a novel bisphenol A substitute that is used in the plastics industry as an organic synthesis intermediate and is a potential endocrine disruptor. However, the deleterious effects of BPFL on porcine Sertoli cells (SCs) and the possible underlying mechanisms are still unclear. Chlorogenic acid (CA) is a free radical scavenger in the cellular antioxidant system that prevents oxidative damage and apoptosis. In the present research, we found that BPFL induced impairments in porcine SCs in a dose-dependent manner and that CA protected porcine SCs against BPFL exposure-induced impairments. Cell viability, proliferation and apoptosis assay results revealed that BPFL exposure could inhibit porcine SC proliferation and induce apoptosis, while CA supplementation ameliorated the effects of BPFL. Further analysis revealed that BPFL exposure induced oxidative stress, mitochondrial membrane potential dysfunction and DNA damage accumulation. Transcriptome analysis and further real-time quantitative PCR and Western blot results showed that BPFL exposure induced endoplasmic reticulum stress and apoptosis. Supplementation with CA dramatically ameliorated these phenotypes in BPFL-exposed porcine SCs. Overall, the present research reveals the possible underlying mechanisms by which BPFL exposure induced impairments and CA supplementation protected against these impairments in porcine SCs

    ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy

    Get PDF
    揭示了在外界能量供应缺乏时,细胞通过激活ULK1来介导葡萄糖分解代谢重编程以维持胞内的能量与氧化还原稳态的详细机制,并创新地发现了ULK1独立于自噬的关键功能。基于自噬和糖代谢与人类健康的重要相关性,该研究将很可能为我们预防和治疗各类代谢疾病提供新的思路和药物靶点。Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.State Key Program of National Natural Science of China, the 973 Program;National Natural Science Foundation of China for Fostering Talents in Basic Research ;the Foundation for Innovative Research Groups of the National Natural Science Foundation of China; and the 111 Project of Education of China

    Incentive design with customer satisfaction for business process outsourcing: multi-task

    No full text
    We study the incentive design decision of a firm that outsources its online marketing and operational business lines to professional external and internal service providers under the principalagent framework. Customer satisfaction is represented as the composite of the agents’ sales and quality-control efforts via the disconfirmation model, and is introduced into the demand model and incentive contracts. Two scenarios corresponding to whether the brand owner delegates business to a single agent or to multiple agents are studied. We derive the brand owner’s optimal contracts and the agents’ effort levels and conduct extensive sensitivity analyses regarding the influences of model parameters. We find that increases in the measure accuracy of customer satisfaction can bring significant benefit to the firm’s profitability, and explore how it is affected by system factors. Specifically, the benefit is more substantial when the marginal cost of quality-control effort is relatively smaller than the marginal cost of sales effort. An interesting discovery is that the brand owner always earns more profit by outsourcing business to multiple agents than to a single agent, mainly because of his inflexibility in reaching a balance between inducing higher effort levels and providing a sufficient risk premium in the singe-agent case. This profit gap can be expanded by incentivizing both agents on customer satisfaction measures, and is shown quite significant under certain settings in the numerical studies
    corecore