58 research outputs found

    A Belief Propagation Based Framework for Soft Multiple-Symbol Differential Detection

    Full text link
    Soft noncoherent detection, which relies on calculating the \textit{a posteriori} probabilities (APPs) of the bits transmitted with no channel estimation, is imperative for achieving excellent detection performance in high-dimensional wireless communications. In this paper, a high-performance belief propagation (BP)-based soft multiple-symbol differential detection (MSDD) framework, dubbed BP-MSDD, is proposed with its illustrative application in differential space-time block-code (DSTBC)-aided ultra-wideband impulse radio (UWB-IR) systems. Firstly, we revisit the signal sampling with the aid of a trellis structure and decompose the trellis into multiple subtrellises. Furthermore, we derive an APP calculation algorithm, in which the forward-and-backward message passing mechanism of BP operates on the subtrellises. The proposed BP-MSDD is capable of significantly outperforming the conventional hard-decision MSDDs. However, the computational complexity of the BP-MSDD increases exponentially with the number of MSDD trellis states. To circumvent this excessive complexity for practical implementations, we reformulate the BP-MSDD, and additionally propose a Viterbi algorithm (VA)-based hard-decision MSDD (VA-HMSDD) and a VA-based soft-decision MSDD (VA-SMSDD). Moreover, both the proposed BP-MSDD and VA-SMSDD can be exploited in conjunction with soft channel decoding to obtain powerful iterative detection and decoding based receivers. Simulation results demonstrate the effectiveness of the proposed algorithms in DSTBC-aided UWB-IR systems.Comment: 14 pages, 12 figures, 3 tables, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 201

    Constructing minimal telescopers for rational functions in three discrete variables

    Full text link
    We present a new algorithm for constructing minimal telescopers for rational functions in three discrete variables. This is the first discrete reduction-based algorithm that goes beyond the bivariate case. The termination of the algorithm is guaranteed by a known existence criterion of telescopers. Our approach has the important feature that it avoids the potentially costly computation of certificates. Computational experiments are also provided so as to illustrate the efficiency of our approach

    Distributed Spatio-Temporal Information Based Cooperative 3D Positioning in GNSS-Denied Environments

    Full text link
    A distributed spatio-temporal information based cooperative positioning (STICP) algorithm is proposed for wireless networks that require three-dimensional (3D) coordinates and operate in the global navigation satellite system (GNSS) denied environments. Our algorithm supports any type of ranging measurements that can determine the distance between nodes. We first utilize a finite symmetric sampling based scaled unscented transform (SUT) method for approximating the nonlinear terms of the messages passing on the associated factor graph (FG) with high precision, despite relying on a small number of samples. Then, we propose an enhanced anchor upgrading mechanism to avoid any redundant iterations. Our simulation results and analysis show that the proposed STICP has a lower computational complexity than the state-of-the-art belief propagation based localizer, despite achieving an even more competitive positioning performance

    Chinese herbal decoction – Xuming Tang: a possible effective treatment for ischemic stroke patients

    Get PDF
    So far, rt – PA remains the best treatment for ischemic stroke within the 3-6 hour window after the onset. However, the majority of ischemic stroke patients do not receive rt – PA treatment due to various reasons and they can only accept the treatment which prevents a second attack. The Chinese herbal decoction – Xuming Tang has been recorded as an effective treatment for stroke in the traditional Chinese medicine book. Recently it has been tested in over 1,500 patients who started taking this herbal decoction from 2.5 hours to days after the onset of stroke in randomised and quasi-randomised trials. It has been shown that approximately 1/3 of the stroke patients fully recovered and another 1/3 improved dramatically after the treatment period. Compared with the data from the control group which received either conventional therapy (this prevents a second attack) or conventional therapy in combination with other Chinese herbal decoctions, Xuming Tang is a better choice for ischemic stroke patients who are ineligible for rt – PA thrombolysis within 3-6 hour window or who miss this time window

    5G PRS-Based Sensing: A Sensing Reference Signal Approach for Joint Sensing and Communication System

    Full text link
    The emerging joint sensing and communication (JSC) technology is expected to support new applications and services, such as autonomous driving and extended reality (XR), in the future wireless communication systems. Pilot (or reference) signals in wireless communications usually have good passive detection performance, strong anti-noise capability and good auto-correlation characteristics, hence they bear the potential for applying in radar sensing. In this paper, we investigate how to apply the positioning reference signal (PRS) of the 5th generation (5G) mobile communications in radar sensing. This approach has the unique benefit of compatibility with the most advanced mobile communication system available so far. Thus, the PRS can be regarded as a sensing reference signal to simultaneously realize the functions of radar sensing, communication and positioning in a convenient manner. Firstly, we propose a PRS based radar sensing scheme and analyze its range and velocity estimation performance, based on which we propose a method that improves the accuracy of velocity estimation by using multiple frames. Furthermore, the Cramer-Rao lower bound (CRLB) of the range and velocity estimation for PRS based radar sensing and the CRLB of the range estimation for PRS based positioning are derived. Our analysis and simulation results demonstrate the feasibility and superiority of PRS over other pilot signals in radar sensing. Finally, some suggestions for the future 5G-Advanced and 6th generation (6G) frame structure design containing the sensing reference signal are derived based on our study

    Distribution of raphespinal fibers in the mouse spinal cord

    Get PDF
    Background: Serotonergic raphespinal neurons and their fibers have been mapped in large mammals, but the non- serotonergic ones have not been studied, especially in the mouse. The present study aimed to investigate the termination pattern of fibers arising from the hindbrain raphe and reticular nuclei which also have serotonergic neurons by injecting the anterograde tracer BDA into them. Results: We found that raphespinal fibers terminate in both the dorsal and ventral horns in addition to lamina 10. There is a shift of the fibers in the ventral horn towards the dorsal and lateral part of the gray matter. Considerable variation in the termination pattern also exists between raphe nuclei with raphe magnus having more fibers terminating in the dorsal horn. Fibers from the adjacent gigantocellular reticular nucleus show similar termination pattern as those from the raphe nuclei with slight difference. Immunofluorescence staining showed that raphespinal fibers were heterogeneous and serotoninergic fibers were present in all laminae but mainly in laminae 1, 2, medial lamina 8, laminae 9 and 10. Surprisingly, immunofluorescence staining on clarified spinal cord tissue revealed that serotoninergic fibers formed bundles regularly in a short distance along the rostrocaudal axis in the medial part of the ventral horn and they extended towards the lateral motor neuron column area. Conclusion: Serotonergic and non-serotonergic fibers arising from the hindbrain raphe and reticular nuclei had similar termination pattern in the mouse spinal cord with subtle difference. The present study provides anatomical foundation for the multiple roles raphe and adjacent reticular nuclei play

    Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections

    Get PDF
    Hepatitis virus infections affect a large proportion of the global population. The host responds rapidly to viral infection by orchestrating a variety of cellular machineries, in particular, the mitochondrial compartment. Mitochondria actively regulate viral infections through modulation of the cellular innate immunity and reprogramming of metabolism. In turn, hepatitis viruses are able to modulate the morphodynamics and functions of mitochondria, but the mode of actions are distinct with respect to different types of hepatitis viruses. The resulting mutual interactions between viruses and mitochondria partially explain the clinical presentation of viral hepatitis, influence the response to antiviral treatment, and offer rational avenues for novel therapy. In this review, we aim to consider in depth the multifaceted interactions of mitochondria with hepatitis virus infections and emphasize the implications for understanding pathogenesis and advancing therapeutic development

    Recombinant identification, molecular classification and proposed reference genomes for hepatitis delta virus

    Get PDF
    Hepatitis delta virus (HDV), as a defective sub-virus that co-infects with hepatitis B virus, imposes an emerging global health burden. However, genetic characteristics and molecular classification of HDV remain under investigated. In this study, we have systematically retrieved and analysed a large set of HDV full-length genome sequences and identified novel recombinants. Based on phylogenetic and genetic analyses, we have established an updated classification system for HDV when recombinants were excluded. Furthermore, we have mapped the global distribution of different genotypes and subtypes. Finally, we have compiled a complete set of reference genomes for each subtype and proposed criteria for future identification of novel genotypes and subtypes. Of note, the global distribution map indicates that currently available HDV genetic data remain limited, and thus our proposed classification will likely evolve as future epidemiological data will accumulate. These results will facilitate the future research on the diagnosis, screening, epidemiology, evolution, prevention and clinical management of HDV infection
    • …
    corecore