80 research outputs found
An Efficient Cervical Whole Slide Image Analysis Framework Based on Multi-scale Semantic and Spatial Deep Features
Digital gigapixel whole slide image (WSI) is widely used in clinical
diagnosis, and automated WSI analysis is key for computer-aided diagnosis.
Currently, analyzing the integrated descriptor of probabilities or feature maps
from massive local patches encoded by ResNet classifier is the main manner for
WSI-level prediction. Feature representations of the sparse and tiny lesion
cells in cervical slides, however, are still challengeable for the
under-promoted upstream encoders, while the unused spatial representations of
cervical cells are the available features to supply the semantics analysis. As
well as patches sampling with overlap and repetitive processing incur the
inefficiency and the unpredictable side effect. This study designs a novel
inline connection network (InCNet) by enriching the multi-scale connectivity to
build the lightweight model named You Only Look Cytopathology Once (YOLCO) with
the additional supervision of spatial information. The proposed model allows
the input size enlarged to megapixel that can stitch the WSI without any
overlap by the average repeats decreased from to
for collecting features and predictions at two scales. Based on Transformer for
classifying the integrated multi-scale multi-task features, the experimental
results appear AUC score better and faster than the best
conventional method in WSI classification on multicohort datasets of 2,019
slides from four scanning devices.Comment: 16 pages, 8 figures, already submitted to Medical Image Analysi
Exact Finite-Difference Schemes for d
The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper
Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor
AbstractMatrix metalloproteinases (MMPs) are secretory endopeptidases. They have been associated with invasion by cancer-cell and metastasis. Previous studies have demonstrated that proteolytic activity could be detected using fluorescence resonance energy transfer (FRET) with mutants of GFP. To monitor MMP activity, we constructed vectors that encoded a MMP Substrate Site (MSS) between YFP and CFP. In vitro, YFP–MSS–CFP can be used to detect MMP activity and 1,10-phenathroline inhibition of MMP activity. In living cells, MMPs are secreted proteins and act outside of the cell, and therefore YFP–MSS–CFPdisplay was anchored on the cellular surface to detect extracellular MMP. A pDisplay-YC vector expressing the YFP–MSS–CFPdisplay on the cellular surface was transfected into MCF-7 cells that expressed low levels of MMP. Efficient transfer of energy from excited CFP to YFP within the YFP–MSS–CFPdisplay molecule was observed, and real-time FRET was declined when MCF-7 was incubated with MMP2. However, no such transfer of energy was detected in the YFP–MSS–CFPdisplay expressing MDA-MB 435s cells, in which high secretory MMP2 were expressed. The FRET sensor YFP–MSS–CFPdisplay can sensitively and reliably monitor MMP activation in living cells and can be used for high-throughput screening of MMP inhibitors for anti-cancer treatments
DeepBouton: Automated Identification of Single-Neuron Axonal Boutons at the Brain-Wide Scale
Fine morphological reconstruction of individual neurons across the entire brain is essential for mapping brain circuits. Inference of presynaptic axonal boutons, as a key part of single-neuron fine reconstruction, is critical for interpreting the patterns of neural circuit wiring schemes. However, automated bouton identification remains challenging for current neuron reconstruction tools, as they focus mainly on neurite skeleton drawing and have difficulties accurately quantifying bouton morphology. Here, we developed an automated method for recognizing single-neuron axonal boutons in whole-brain fluorescence microscopy datasets. The method is based on deep convolutional neural networks and density-peak clustering. High-dimensional feature representations of bouton morphology can be learned adaptively through convolutional networks and used for bouton recognition and subtype classification. We demonstrate that the approach is effective for detecting single-neuron boutons at the brain-wide scale for both long-range pyramidal projection neurons and local interneurons
Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision
Morphological diversity of single neurons in molecularly defined cell types.
Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits
- …