27 research outputs found

    The adder (Vipera berus) in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position

    No full text
    As the most widely distributed snake in Eurasia, the adder (Vipera berus) has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder’s southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial cytochrome b (1,023 bp) grouped them within the Northern clade of the species but failed to separate them from the subspecies V. b. sachalinensis. Our discovery extends the distribution range of V. berus and provides a basis for further researches. We discuss the hypothesis that the adder expands its distribution border to the southwest along the mountains’ elevation gradient, but the population abundance declines gradually due to a drying climate

    The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life.

    No full text
    A drug's biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO) terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347), monoamine transmembrane transporter activity (GO:0008504), negative regulation of synaptic transmission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives

    Novel 4‑Arylindolines Containing a Pyrido[3,2‑<i>d</i>]pyrimidine Moiety as the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Interaction Inhibitors for Tumor Immunotherapy

    No full text
    A series of pyrido[3,2-d]pyrimidine-containing 4-arylindolines were identified as potent inhibitors of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) interaction by structural optimization of a 4-arylindoline precursor reported previously. Among them, compound N11 was the most promising inhibitor, showing an IC50 value of 6.3 nM against the PD-1/PD-L1 interaction at the biochemical level. In in vitro T-cell tumor co-culture models, N11 significantly promoted T-cell proliferation, activation, and infiltration into tumor spheres, demonstrating that it possessed excellent immunomodulatory activity. In addition, N11 exhibited favorable in vivo antitumor activity in an LLC/PD-L1 tumor-bearing mouse model. Flow cytometry analysis verified that the in vivo antitumor efficacy of N11 was dependent on the activation of the immune microenvironment. These findings suggest that N11 can serve as a new starting point for the future development of small-molecule antitumor immunomodulators targeting the PD-1/PD-L1 axis

    Novel 4‑Arylindolines Containing a Pyrido[3,2‑<i>d</i>]pyrimidine Moiety as the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Interaction Inhibitors for Tumor Immunotherapy

    No full text
    A series of pyrido[3,2-d]pyrimidine-containing 4-arylindolines were identified as potent inhibitors of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) interaction by structural optimization of a 4-arylindoline precursor reported previously. Among them, compound N11 was the most promising inhibitor, showing an IC50 value of 6.3 nM against the PD-1/PD-L1 interaction at the biochemical level. In in vitro T-cell tumor co-culture models, N11 significantly promoted T-cell proliferation, activation, and infiltration into tumor spheres, demonstrating that it possessed excellent immunomodulatory activity. In addition, N11 exhibited favorable in vivo antitumor activity in an LLC/PD-L1 tumor-bearing mouse model. Flow cytometry analysis verified that the in vivo antitumor efficacy of N11 was dependent on the activation of the immune microenvironment. These findings suggest that N11 can serve as a new starting point for the future development of small-molecule antitumor immunomodulators targeting the PD-1/PD-L1 axis
    corecore