529 research outputs found
Рівні сформованості музично-артистичного досвіду майбутніх учителів музики та хореографії
The article examines the problem of forming the musical and artistic experience of students of art faculties of pedagogical universities. The importance of future teachers of music and choreography acquiring musical and artistic experience is highlighted, which is animportant problem today, which significantly affects the development of the irinternal and external culture. The structural construction of musical-artistic experience is presented, the important components of which are motivational-directed, competence-informative, andexecutive-projective components.In the process of ascertaining experiment, the levels of formation of musical and artistic experience of students of arts faculties were determined, namely: high, medium, low, which were given qualitative and quantitative characteristics. The powerful influence of aneffective integrative combination of music and movements on the formation of the musical and artistic experience of future teachers of musical art and choreography has been determined, which allows to more intensively perceive the artistic and musical images of artistic works, to find effective means for their more vividembodiment.Keywords: musical and artistic experience, future teachers of music and choreography, for mation of levels, structural construction, creative and executive activity.У статті розглядається проблема формування музично-артистичного досвіду студентів факультетів мистецтв педагогічних університетів. Виокремлено значення набуття майбутніми вчителями музики та хореографії музично-артистичного досвіду, що є важливою проблемою сьогодення, яка значно впливає на розвиток їх внутрішньої та зовнішньої культури. Наведено структурну побудову музично-артистичного досвіду, важливими складовими якого виступають мотиваційно-спрямований, компетентнісно-інформативний, та виконавсько-проективний компоненти. У процесі констатувального експерименту визначено рівні сформованості музично-артистичного досвіду студентів факультетів мистецтв, а саме:високий, середній, низький, яким надано якісні та кількісні характеристики. Визначено могутній вплив ефективного інтегративного поєднання музики та рухів на формування музично-артистичного досвіду майбутніх учителів музичного мистецтва і хореографії, що дозволяє інтенсивніше сприймати художньо-музичні образи мистецьких творів, знаходити дієві засоби для їх більш яскравого втілення. Ключові слова: музично-артистичний досвід, майбутні вчителі музики та хореографії, сформованість рівнів, структурна побудова, творчо-виконавська діяльність
How can Deep Learning Retrieve the Write-Missing Additional Diagnosis from Chinese Electronic Medical Record For DRG
The purpose of write-missing diagnosis detection is to find diseases that
have been clearly diagnosed from medical records but are missed in the
discharge diagnosis. Unlike the definition of missed diagnosis, the
write-missing diagnosis is clearly manifested in the medical record without
further reasoning. The write-missing diagnosis is a common problem, often
caused by physician negligence. The write-missing diagnosis will result in an
incomplete diagnosis of medical records. While under DRG grouping, the
write-missing diagnoses will miss important additional diagnoses (CC, MCC),
thus affecting the correct rate of DRG enrollment.
Under the circumstance that countries generally start to adopt DRG enrollment
and payment, the problem of write-missing diagnosis is a common and serious
problem. The current manual-based method is expensive due to the complex
content of the full medical record. We think this problem is suitable to be
solved as natural language processing. But to the best of our knowledge, no
researchers have conducted research on this problem based on natural language
processing methods.
We propose a framework for solving the problem of write-missing diagnosis,
which mainly includes three modules: disease recall module, disease context
logic judgment module, and disease relationship comparison module. Through this
framework, we verify that the problem of write-missing diagnosis can be solved
well, and the results are interpretable. At the same time, we propose advanced
solutions for the disease context logic judgment module and disease
relationship comparison module, which have obvious advantages compared with the
mainstream methods of the same type of problems. Finally, we verified the value
of our proposed framework under DRG medical insurance payment in a tertiary
hospital
Improved Total Variation based Image Compressive Sensing Recovery by Nonlocal Regularization
Recently, total variation (TV) based minimization algorithms have achieved
great success in compressive sensing (CS) recovery for natural images due to
its virtue of preserving edges. However, the use of TV is not able to recover
the fine details and textures, and often suffers from undesirable staircase
artifact. To reduce these effects, this letter presents an improved TV based
image CS recovery algorithm by introducing a new nonlocal regularization
constraint into CS optimization problem. The nonlocal regularization is built
on the well known nonlocal means (NLM) filtering and takes advantage of
self-similarity in images, which helps to suppress the staircase effect and
restore the fine details. Furthermore, an efficient augmented Lagrangian based
algorithm is developed to solve the above combined TV and nonlocal
regularization constrained problem. Experimental results demonstrate that the
proposed algorithm achieves significant performance improvements over the
state-of-the-art TV based algorithm in both PSNR and visual perception.Comment: 4 Pages, 1 figures, 3 tables, to be published at IEEE Int. Symposium
of Circuits and Systems (ISCAS) 201
Selective Combining for Hybrid Cooperative Networks
In this study, we consider the selective combining in hybrid cooperative
networks (SCHCNs scheme) with one source node, one destination node and
relay nodes. In the SCHCN scheme, each relay first adaptively chooses between
amplify-and-forward protocol and decode-and-forward protocol on a per frame
basis by examining the error-detecting code result, and () relays will be selected to forward their received signals to the
destination. We first develop a signal-to-noise ratio (SNR) threshold-based
frame error rate (FER) approximation model. Then, the theoretical FER
expressions for the SCHCN scheme are derived by utilizing the proposed SNR
threshold-based FER approximation model. The analytical FER expressions are
validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201
- …