174 research outputs found

    Low-temperature quantum transport in CVD-grown single crystal graphene

    Full text link
    Chemical vapor deposition (CVD) has been proposed for large-scale graphene synthesis for practical applications. However, the inferior electronic properties of CVD graphene are one of the key problems to be solved. In this study, we present a detailed study on the electronic properties of high-quality single crystal monolayer graphene. The graphene is grown by CVD on copper using a cold-wall reactor and then transferred to Si/SiO2. Our low-temperature magneto-transport data demonstrate that the characteristics of the measured single-crystal CVD graphene samples are superior to those of polycrystalline graphene and have a quality which is comparable to that of exfoliated graphene on Si/SiO2. The Dirac point in our best samples is located at back-gate voltages of less than 10V, and their mobility can reach 11000 cm2/Vs. More than 12 flat and discernible half-integer quantum Hall plateaus have been observed in high magnetic field on both the electron and hole side of the Dirac point. At low magnetic field, the magnetoresistance shows a clear weak localization peak. Using the theory of McCann et al., we find that the inelastic scattering length is larger than 1 {\mu}m in these samples even at the charge neutrality point
    • …
    corecore