415 research outputs found

    China's multilateralism and the South China sea conflict: Quest for hegemonic stability

    Get PDF
    Master'sMASTER OF SOCIAL SCIENCE

    原因・理由を表す複合的な接続表現の史的研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 井島 正博, 東京大学教授 月本 雅幸, 東京大学准教授 肥爪 周二, 千葉大学教授 岡部 嘉幸, 学習院大学教授 前田 直子University of Tokyo(東京大学

    Cold gas and a Milky Way-type 2175 {\AA} bump in a metal-rich and highly depleted absorption system

    Full text link
    We report the detection of a strong Milky Way-type 2175 \AA extinction bump at zz = 2.1166 in the quasar spectrum towards SDSS J121143.42+083349.7 from the Sloan Digital Sky Survey (SDSS) Data Release 10. We conduct follow up observations with the Echelle Spectrograph and Imager (ESI) onboard the Keck-II telescope and the Ultraviolet and Visual Echelle Spectrograph (UVES) on the VLT. This 2175 \AA absorber is remarkable in that we simultaneously detect neutral carbon (C I), neutral chlorine (Cl I), and carbon monoxide (CO). It also qualifies as a damped Lyman alpha system. The J1211+0833 absorber is found to be metal-rich and has a dust depletion pattern resembling that of the Milky Way disk clouds. We use the column densities of the C I fine structure states and the C II/C I ratio (under the assumption of ionization equilibrium) to derive the temperature and volume density in the absorbing gas. A Cloudy photoionization model is constructed, which utilizes additional atoms/ions to constrain the physical conditions. The inferred physical conditions are consistent with a canonical cold (T \sim 100 K) neutral medium with a high density (nn(H I) \sim 100 cm3^{-3}) and a slightly higher pressure than the local interstellar medium. Given the simultaneous presence of C I, CO, and the 2175 \AA bump, combined with the high metallicity, high dust depletion level and overall low ionization state of the gas, the absorber towards J1211+0833 supports the scenario that the presence of the bump requires an evolved stellar population.Comment: 18 pages, 17 figures, to be published in MNRA

    Fusing Monocular Images and Sparse IMU Signals for Real-time Human Motion Capture

    Full text link
    Either RGB images or inertial signals have been used for the task of motion capture (mocap), but combining them together is a new and interesting topic. We believe that the combination is complementary and able to solve the inherent difficulties of using one modality input, including occlusions, extreme lighting/texture, and out-of-view for visual mocap and global drifts for inertial mocap. To this end, we propose a method that fuses monocular images and sparse IMUs for real-time human motion capture. Our method contains a dual coordinate strategy to fully explore the IMU signals with different goals in motion capture. To be specific, besides one branch transforming the IMU signals to the camera coordinate system to combine with the image information, there is another branch to learn from the IMU signals in the body root coordinate system to better estimate body poses. Furthermore, a hidden state feedback mechanism is proposed for both two branches to compensate for their own drawbacks in extreme input cases. Thus our method can easily switch between the two kinds of signals or combine them in different cases to achieve a robust mocap. %The two divided parts can help each other for better mocap results under different conditions. Quantitative and qualitative results demonstrate that by delicately designing the fusion method, our technique significantly outperforms the state-of-the-art vision, IMU, and combined methods on both global orientation and local pose estimation. Our codes are available for research at https://shaohua-pan.github.io/robustcap-page/.Comment: Accepted by SIGGRAPH ASIA 2023. Project page: https://shaohua-pan.github.io/robustcap-page
    corecore