46 research outputs found

    Seismic imaging of a mid-crustal low-velocity layer beneath the northern coast of the South China Sea and its tectonic implications

    Get PDF
    International audienceThis is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

    (−)-Dimethyl 3,3′-diphenyl-2,2′-[pyridine-2,6-diylbis(carbonyl­imino)]dipropanoate

    Get PDF
    The title compound, C27H27N3O6, a bis-amide derivative, is also a chiral amino acid ester with l-phenyl­alanine methyl ester groups as amine substituents. The pyridine ring is oriented at dihedral angles of 89.69 (3) and 62.95 (3)° with respect to the phenyl rings, while the dihedral angle between the phenyl rings is 60.76 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains. One of the carbonyl O atoms and one of the meth­oxy CH3 groups are disordered over two positions. The O atom was refined with occupancies of 0.69 (13) and 0.31 (13), while C and H atoms were refined with occupancies of 0.69 (8) and 0.31 (8)

    Deep seismic structure across the southernmost Mariana trench: Implications for arc rifting and plate hydration

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(5), (2019): 4710-4727, doi:10.1029/2018JB017080.The southernmost Mariana margin lacks a mature island arc and thus differs significantly from the central‐north Mariana and Izu‐Bonin margins. This paper presents a new P wave velocity model of the crust and uppermost mantle structure based on a 349‐km‐long profile of wide‐angle reflection/refraction data. The active source seismic experiment was conducted from the subducting Pacific plate to the overriding Philippine plate, passing through the Challenger Deep. The subducting plate has an average crustal thickness of ~6.0 km with Vp of 7.0 ± 0.2 km/s at the base of the crust and low values of only 5.5–6.9 km/s near the trench axis. The uppermost mantle of the subducting plate is characterized by low velocities of 7.0–7.3 km/s. The overriding plate has a maximum crustal thickness of ~18 km beneath the forearc with Vp of ~7.4 km/s at the crustal bottom and 7.5–7.8 km/s in the uppermost mantle. A zone of slight velocity reduction is imaged beneath the Southwest Mariana Rift that is undergoing active rifting. The observed significant velocity reduction in a near‐trench crustal zone of ~20–30 km in the subducting plate is interpreted as a result of faulting‐induced porosity changes and fracture‐filling fluids. The velocity reduction in the uppermost mantle of both subducting and overriding plates is interpreted as mantle serpentinization with fluid sources from dehydration of the subducting plate and/or fluid penetration along faults.Data acquisition and sample collections were supported by the Mariana Trench Initiative of the Chinese Academy of Sciences (CAS). We are grateful to the science parties and crews of R/V Shiyan 3 of the South China Sea Institute of Oceanology, CAS, for contributions to data acquisition. Constructive reviews by Robert Stern, Martha Savage, and anonymous reviewers significantly improved the manuscript. We thank Gaohua Zhu, Fan Zhang, Chunfeng Li, Zhen Sun, Zhi Wang, and Minghui Zhao for helpful discussion. The bathymetric maps were plotted using GMT (Wessel & Smith, 1995). Digital files of the velocity models and selected raw data are deposited and accessible online (at https://pan.baidu.com/s/1AbDJOgLZhYn1C‐3sg7S9Xw). This work was supported by the Strategic Priority Program of CAS (XDA13010101), CAS (Y4SL021001, QYZDY‐SSW‐DQC005, and 133244KYSB20180029), Key Laboratory of Ocean and Marginal Sea Geology, CAS (OMG18‐03), National Natural Science Foundation of China (41890813, 41676042, U1701641, 91628301, 41576041, and U1606401), and HKSAR Research Grant Council grants (14313816).2019-10-0

    Study on closing and cracking stress calculation method of fractured rock

    Get PDF
    Determining the characteristic stress intensity according to the rock stress-strain curve is significant significance for rock engineering. Nowadays, there are relatively mature methods for determining peak stress and damage stress. However, the crack volume strain method, axial strain method, and strain response method are more subjective to determine rock’s closure stress and initiation stress. The closure rock stress and crack initiation stress refined value method are proposed based on these methods, which are based on the discreteness of the rock stress and strain point. Through optimizing the stress characteristics by an objective function (variance function), the subjectivity of artificial observation is avoided; Based on the trend of rock stress-strain curve, an empirical method for determining rock closure stress and crack initiation stress is proposed. The test results indicate that the two proposed methods that calculate closure rock stress and crack initiation stress can obtain reasonable results. These methods can be used as a supplement to the characteristics of the rock stress determination method and can be used in actual engineering

    Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures

    Get PDF
    Multibeam bathymetric, seismic and borehole data are used to investigate a large-scale strike-slip structure, the Baiyun-Liwan Fault Zone, in the northern South China Sea. This fault zone comprises NW- to NE-striking faults and negative flower structures that were generated by oblique extensional displacement. Notably, the interpreted data reveals that the Baiyun-Liwan Fault Zone was active during the Cenozoic, recording intense magmatism, and accommodating significant intraplate deformation during progressive continental rifting and ocean spreading. It bounds two distinct crustal segments and played a significant role in segmenting the northern margin of the South China Sea. The geometry of faults and strata within the Baiyun-Liwan Fault Zone also controlled local sediment routing and depocentre evolution during the Cenozoic. As basement and syn-rift structures change markedly across the Baiyun-Liwan Fault Zone, we propose this structure to be inherited from a lithospheric-scale fault zone separating the Mesozoic arc from forearc-related terrains. We therefore stress the importance of pre-existing structures in the development of rifted margins, with the example provided by the Baiyun-Liwan Fault Zone having profound implications for palaeogeographic reconstructions in the South China Sea. At present, the Baiyun-Liwan Fault Zone is incised by the Pearl River Canyon and eroded by recurrent submarine landslides, forming a major area of sediment bypass towards the abyssal plain

    Sensing Human Activity of the Guangdong–Hong Kong–Macao Greater Bay Area by Ambient Seismic Noise

    No full text
    Effective monitoring of human activity in urban areas is essential for social stability and urban development. Traditional monitoring methods include wearable devices, survey sensor networks, and satellite remote sensing, which may be affected by privacy and weather conditions. Ambient seismic noise recorded by seismometers contains rich information about human activity and exhibits significant temporal and spatial variations, which provides valuable insights into social mobility. In this study, we investigated the correlation between human activity and ambient seismic noise in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) using the data recorded by 138 seismometers. Our results indicate that ambient seismic noise produced by human activity in the GBA is mainly concentrated between 2 and 20 Hz. The spatial distribution of ambient seismic noise exhibits a strong correlation with population and economy. Our results show that the analysis of ambient seismic noise can reveal the spatial and temporal impacts of different factors on human activity in the GBA, such as day and night, holidays, weather changes, national policies, and the coronavirus disease 2019 (COVID-19) pandemic. Furthermore, the analysis of 12-year-long ambient seismic noise at the Hong Kong seismic station shows a close connection between long-term changes in ambient seismic noise and local social development. This study suggests that the analysis of ambient seismic noise represents a novel method to gather critical information about human activity. Seismometers, which are widely deployed worldwide, have great potential as innovative tools for sensing human activity

    Dynamic System Stability Modeling Approach with Sparrow-Inspired Meta-Heuristic Optimization Algorithm

    No full text
    Aiming at the accurate prediction of the inception of instability in a compressor, a dynamic system stability model is proposed based on a sparrow-inspired meta-heuristic optimization algorithm in this article. To achieve this goal, a spatial mode is employed for flow field feature extraction and modeling object acquisition. The nonlinear characteristic presented in the system is addressed using fuzzy entropy as the identification strategy to provide a basis for instability determination. Using Sparrow Search Algorithm (SSA) optimization, a Radial Basis Function Neural Network (RBFNN) is achieved for the performance prediction of system status. A Logistic SSA solution is first established to seek the optimal parameters of the RBFNN to enhance prediction accuracy and stability. On the basis of the RBFNN-LSSA hybrid model, the stall inception is detected about 35.8 revolutions in advance using fuzzy entropy identification. To further improve the multi-step network model, a Tent SSA is introduced to promote the accuracy and robustness of the model. A wider range of potential solutions within the TSSA are explored by incorporating the Tent mapping function. The TSSA-based optimization method proves a suitable adaptation for complex nonlinear dynamic modeling. And this method demonstrates superior performance, achieving 42 revolutions of advance warning with multi-step prediction. This RBFNN-TSSA model represents a novel and promising approach to the application of system modeling. These findings contribute to enhancing the abnormal warning capability of dynamic systems in compressors

    A New Theoretical View of Rockburst and Its Engineering Application

    No full text
    Traditionally, rockburst is considered as a dynamic phenomenon of sudden destruction of coal/rock mass. In this study, rockburst is treated as an event process rather than a phenomenon. This paper introduces typical rockburst process, its classification, mechanism of internal and external causes, and energy criterion. Analysis indicates that rockburst is a dynamic process that includes three sequential phases: burst start-up, burst energy transfer, and rockburst pressure behavior. Excessive static stress concentration in the strata nearby the target zone appears to be the internal cause of rockburst start-up, while the external cause is the disturbance of the static stress concentration and additional load transfer by the concentrated dynamic load occurred at further distance. Potential burst start-up area is the highest stress concentration zone within the region where stress is in the critical equilibrium state. With the identified internal and external factors that contribute to rockburst start-up, it is concluded that the rockburst preventive measures should focus on the monitoring and controlling of originating source of static and dynamic stress concentrations. Field practice proves that the reunderstanding of rockburst and the derived preventive measures are feasible and successful
    corecore