18 research outputs found

    LHDにおけるNBI用水素負イオン源とビーム生成の最新の研究成果

    Get PDF
    The state of hydrogen plasma in the extraction region in a hydrogen negative-ion (H−) source for NBI has been investigated. We clearly observe an improvement of H− density owing to the surface production effect with Cs seeding. H− ions are widely distributed in the extraction region which is obtained by movable cavity ring down (CRD). We confirm a negative ion rich plasma with a few electrons in the extraction region, which state is important for reduction of electron contamination in extracting beam. An extraction area is reached 30mm from the PG surface, which is measured by a 2D imaging diagnostic for Hα emission. We find the insensitive area for H− extraction at the PG surface between the apertures. Negative ions produced at the surface are considered tohave been supplied in the extraction region. The flow velocity of H− ions is obtained by a four-pin Langmuir probe using a photodetachment technique with an Nd:YAG laser. H− ion flows from the plasma grid surface, and its direction drastically changes at 20mm from the production surface. This flow behavior is considered to be an important characteristic for improving H− density in the extraction region

    Theoretical calculation of cesium deposition and co-deposition with electronegative elements on the plasma grid in negative ion sources

    Get PDF
    We studied the work function of cesium deposition and co-deposition with the electronegative element on the plasma grid (PG) using the first-principles calculations. The impurity particles may exist in the background plasma and vacuum chamber wall, and the work function of the PG will be affected. The results indicate that the minimum work functions of pure cesium deposition on Mo (110), W (110), and Mo (112) are reached at a partial monolayer. They are 1.66 eV (σ = 0.56 θ), 1.69 eV (σ = 0.75 θ), and 1.75 eV (σ = 0.88 θ), respectively. An appropriate co-deposition model consisting of cesium with electronegative elements can further decrease the work function. The coverage of cesium and electronegative elements are both 0.34 θ in all the co-deposition models. The F-Cs co-deposition model where the Cs atom and F atom are aligned along the surface normal obtains the lowest work function. They are 1.31 eV for F-Cs on Mo (110), and 1.23 eV for F-Cs on W (110), respectively. The change in work function is linearly related to the change in dipole moment density with a slope of −167.03 VÅ. For pure cesium deposition, two factors control the change in dipole-moment density, one is the electron transfer between adsorbates and the substrate, and another one is the restructuring of surface atoms. There are two additional factors for the co-deposition model. One is the intrinsic dipole moment of the double layer, the other is the angle between the intrinsic dipole moment and the surface. The latter two factors play important roles in increasing the total dipole moment

    Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method

    No full text
    Interlocked armor layers of unbonded flexible risers may crush when risers are being launched. In order to predict the behavior of interlocked armor layers, they are usually simplified as rings with geometric and contact nonlinearity ignored in the open-literature. However, the equivalent thickness of the interlocked armor layer has not been addressed yet. In the present paper, a geometric coefficient γ is introduced to the equivalent stiffness method, and a linear relationship between γ and geometric parameters of interlocked armor layers is validated by analytical and finite element models. Radial stiffness and equivalent thickness of interlocked armor layers are compared with experiments and different equivalent methods, which show that the present method has a higher accuracy. Furthermore, hoop stress distribution of interlocked armor layer under crushing is predicted, which indicates the interlocked armor layer can be divided into two compression and two expansion zones by four symmetrically distributed singular points. Keywords: Flexible riser, Carcass layer, Pressure armor layer, Crushin

    Depth of Influence on the Plasma by Beam Extraction in a Negative Hydrogen Ion Source for NBI

    Get PDF
    Experimental measurements with Langmuir probe and laser photodetachment in beam extraction region of a cesium-seeded negative ion source for NBI has been conducted in order to investigate the response of charged particles to applied external field. The profiles of probe saturation current and H− ion density in the direction normal to the plasma grid (PG) surface were measured by scanning the tip position. By comparing the results before and during beam extraction, the charged particle responses due to the beam extraction have been analyzed. During beam extraction, probe saturation current increases since H− ions are extracted and electrons flow into the extracting region for charge neutrality. The maximum increment of the probe saturation current due to electron flow appears in the range of 15 - 25 mm apart from the PG surface. Meanwhile, the maximum decrement of the H− ion density is at around 18 mm from the PG. In the region far from the PG, probe saturation current increment is low as well as the decrement of the H− ion density. The extrapolations of the profiles suggest that the depth of the influence on the plasma by beam extraction is 42 mm from the plasma grid surface
    corecore