4,895 research outputs found

    Reconstructing black hole exteriors and interiors using entanglement and complexity

    Full text link
    Based on the AdS/CFT correspondence, we study how to reconstruct bulk spacetime metrics by various quantum information measures on the boundary field theories, which include entanglement entropy, mutual information, entanglement of purification, and computational complexity according to the proposals of complexity=volume 2.0 and complexity=generalized volume. We present several reconstruction methods, all of which are free of UV divergence and most of which are driven by the derivatives of the measures with respect to the boundary scales. We illustrate that the exterior and interior of a black hole can be reconstructed using the measures of spatial entanglement and time-evolved complexity, respectively. We find that these measures always probe the spacetime in a local way: reconstructing the bulk metric in different radial positions requires the information at different boundary scales. We also show that the reconstruction method using complexity=volume 2.0 proposal is the simplest and has the strongest locality.Comment: 25 pages, 18 figures, 1 tabl

    Extracting spinning wormhole energy via magnetic reconnection

    Full text link
    Magnetic reconnection has been extensively shown to be a promising approach to extract spinning black hole energy. In this paper, we focus on extracting spinning wormhole energy via such mechanism. The study shows that it is indeed possible to extract rotating energy from a spinning wormhole with small regularization parameter â„“\ell of the central singularity. The efficiency and power of the energy extraction are also evaluated. Quite different from the Kerr black hole, the spin of the wormhole can take arbitrarily large value. However, the increasing of wormhole spin not always improves the efficiency and power of energy extraction. By further comparing with the Kerr black hole, we find the wormhole is more efficient when the magnetic reconnection happens within radial distance r/M<1r/M<1. These studies reveal the features of extracting spinning wormhole energy, and more underlying properties are expected to be disclosed for the horizonless objects.Comment: 15 pages and 8 figures, references adde

    Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration

    Full text link
    Optical complex materials offer unprecedented opportunity to engineer fundamental band dispersion which enables novel optoelectronic functionality and devices. Exploration of photonic Dirac cone at the center of momentum space has inspired an exceptional characteristic of zero-index, which is similar to zero effective mass in fermionic Dirac systems. Such all-dielectric zero-index photonic crystals provide an in-plane mechanism such that the energy of the propagating waves can be well confined along the chip direction. A straightforward example is to achieve the anomalous focusing effect without longitudinal spherical aberration, when the size of zero-index lens is large enough. Here, we designed and fabricated a prototype of zero-refractive-index lens by comprising large-area silicon nanopillar array with plane-concave profile. Near-zero refractive index was quantitatively measured near 1.55 um through anomalous focusing effect, predictable by effective medium theory. The zero-index lens was also demonstrated to perform ultralow longitudinal spherical aberration. Such IC compatible device provides a new route to integrate all-silicon zero-index materials into optical communication, sensing, and modulation, and to study fundamental physics on the emergent fields of topological photonics and valley photonics.Comment: 14 pages, 4 figure

    Long and Diverse Text Generation with Planning-based Hierarchical Variational Model

    Full text link
    Existing neural methods for data-to-text generation are still struggling to produce long and diverse texts: they are insufficient to model input data dynamically during generation, to capture inter-sentence coherence, or to generate diversified expressions. To address these issues, we propose a Planning-based Hierarchical Variational Model (PHVM). Our model first plans a sequence of groups (each group is a subset of input items to be covered by a sentence) and then realizes each sentence conditioned on the planning result and the previously generated context, thereby decomposing long text generation into dependent sentence generation sub-tasks. To capture expression diversity, we devise a hierarchical latent structure where a global planning latent variable models the diversity of reasonable planning and a sequence of local latent variables controls sentence realization. Experiments show that our model outperforms state-of-the-art baselines in long and diverse text generation.Comment: To appear in EMNLP 201

    QED effects on phase transition and Ruppeiner geometry of Euler-Heisenberg-AdS black holes

    Full text link
    Taking the quantum electrodynamics (QED) effect into account, we study the black hole phase transition and Ruppeiner geometry for the Euler-Heisenberg anti-de Sitter black hole in the extended phase space. For negative and small positive QED parameter, we observe a small/large black hole phase transition and reentrant phase transition, respectively. While a large positive value of the QED parameter ruins the phase transition. The phase diagrams for each case are explicitly exhibited. Then we construct the Ruppeiner geometry in the thermodynamic parameter space. Different features of the corresponding scalar curvature are shown for both the small/large black hole phase transition and reentrant phase transition cases. Of particular interest is that an additional region of positive scalar curvature indicating dominated repulsive interaction among black hole microstructure is present for the black hole with a small positive QED parameter. Furthermore, the universal critical phenomena are also observed for the scalar curvature of the Ruppeiner geometry. These results indicate that the QED parameter has a crucial influence on the black hole phase transition and microstructure.Comment: 19 pages, 14 figure
    • …
    corecore