470 research outputs found
The Doctor's Daughter
A child's perception of the oddness of growing up in a hospital where her parents are physicians in a riverside subtropical southern Chinese city
Recommended from our members
Raman studies of reorientational dynamics in liquids
Raman and/or infrared (IR) bandshape analysis to probe molecular dynamics in liquids has become a rapidly expanding field of study in recent years. Determination of spinning and tumbling diffusion constants, Dι and D⊥, which characterize the reorientation of symmetric-top moleclues has been successfully studied in a number of D6H and D3H molecules. For molecules of CV3 symmetry, however, previous attempts to extract spinning diffusion constants from Raman doubly degenerate vibrations (E mode) have proved unsuccessful. Presented here is a new methodology which resolves the problems encountered by former researchers through calculation of Dι utilizing the narrower Lorentzian component of E vibrations
Learning Discriminative Shrinkage Deep Networks for Image Deconvolution
Most existing methods usually formulate the non-blind deconvolution problem
into a maximum-a-posteriori framework and address it by manually designing
kinds of regularization terms and data terms of the latent clear images.
However, explicitly designing these two terms is quite challenging and usually
leads to complex optimization problems which are difficult to solve. In this
paper, we propose an effective non-blind deconvolution approach by learning
discriminative shrinkage functions to implicitly model these terms. In contrast
to most existing methods that use deep convolutional neural networks (CNNs) or
radial basis functions to simply learn the regularization term, we formulate
both the data term and regularization term and split the deconvolution model
into data-related and regularization-related sub-problems according to the
alternating direction method of multipliers. We explore the properties of the
Maxout function and develop a deep CNN model with a Maxout layer to learn
discriminative shrinkage functions to directly approximate the solutions of
these two sub-problems. Moreover, given the fast-Fourier-transform-based image
restoration usually leads to ringing artifacts while conjugate-gradient-based
approach is time-consuming, we develop the Conjugate Gradient Network to
restore the latent clear images effectively and efficiently. Experimental
results show that the proposed method performs favorably against the
state-of-the-art ones in terms of efficiency and accuracy
On the Adversarial Robustness of Vision Transformers
Following the success in advancing natural language processing and
understanding, transformers are expected to bring revolutionary changes to
computer vision. This work provides the first and comprehensive study on the
robustness of vision transformers (ViTs) against adversarial perturbations.
Tested on various white-box and transfer attack settings, we find that ViTs
possess better adversarial robustness when compared with convolutional neural
networks (CNNs). This observation also holds for certified robustness. We
summarize the following main observations contributing to the improved
robustness of ViTs:
1) Features learned by ViTs contain less low-level information and are more
generalizable, which contributes to superior robustness against adversarial
perturbations.
2) Introducing convolutional or tokens-to-token blocks for learning low-level
features in ViTs can improve classification accuracy but at the cost of
adversarial robustness.
3) Increasing the proportion of transformers in the model structure (when the
model consists of both transformer and CNN blocks) leads to better robustness.
But for a pure transformer model, simply increasing the size or adding layers
cannot guarantee a similar effect.
4) Pre-training on larger datasets does not significantly improve adversarial
robustness though it is critical for training ViTs.
5) Adversarial training is also applicable to ViT for training robust models.
Furthermore, feature visualization and frequency analysis are conducted for
explanation. The results show that ViTs are less sensitive to high-frequency
perturbations than CNNs and there is a high correlation between how well the
model learns low-level features and its robustness against different
frequency-based perturbations
Recommended from our members
A Robust Gene Expression Prognostic Signature for Overall Survival in High-Grade Serous Ovarian Cancer.
The objective of this research was to develop a robust gene expression-based prognostic signature and scoring system for predicting overall survival (OS) of patients with high-grade serous ovarian cancer (HGSOC). Transcriptomic data of HGSOC patients were obtained from six independent studies in the NCBI GEO database. Genes significantly deregulated and associated with OS in HGSOCs were selected using GEO2R and Kaplan-Meier analysis with log-rank testing, respectively. Enrichment analysis for biological processes and pathways was performed using Gene Ontology analysis. A resampling/cross-validation method with Cox regression analysis was used to identify a novel gene expression-based signature associated with OS, and a prognostic scoring system was developed and further validated in nine independent HGSOC datasets. We first identified 488 significantly deregulated genes in HGSOC patients, of which 232 were found to be significantly associated with their OS. These genes were significantly enriched for cell cycle division, epithelial cell differentiation, p53 signaling pathway, vasculature development, and other processes. A novel 11-gene prognostic signature was identified and a prognostic scoring system was developed, which robustly predicted OS in HGSOC patients in 100 sampling test sets. The scoring system was further validated successfully in nine additional HGSOC public datasets. In conclusion, our integrative bioinformatics study combining transcriptomic and clinical data established an 11-gene prognostic signature for robust and reproducible prediction of OS in HGSOC patients. This signature could be of clinical value for guiding therapeutic selection and individualized treatment
- …