2,441 research outputs found

    A New Design for Low Impact Development in Urban Area- Infiltration Pipe and Gravel Pile

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Cryopreservation of Orchid Genetic Resources by Desiccation: A Case Study of Bletilla formosana

    Get PDF
    Many native orchid populations declined yearly due to economic development and climate change. This resulted in some wild orchids being threatened. In order to maintain the orchid genetic resources, development of proper methods for the long‐term preservation is urgent. Low temperature or dry storage methods for the preservation of orchid genetic resources have been implemented but are not effective in maintaining high viability of certain orchids for long periods. Cryopreservation is one of the most acceptable methods for long‐term conservation of plant germplasm. Orchid seeds and pollens are ideal materials for long‐term preservation (seed banking) in liquid nitrogen (LN) as the seeds and pollens are minute, enabling the storage of many hundreds of thousands of seeds or pollens in a small vial, and as most species germinate readily, making the technique very economical. This article describes cryopreservation of orchid genetic resources by desiccation and a case study of Bletilla formosana. We hope to provide a more practical potential cryopreservation method for future research needs

    Transplantation of Human Umbilical Mesenchymal Stem Cells from Wharton's Jelly after Complete Transection of the Rat Spinal Cord

    Get PDF
    BACKGROUND: Human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton's jelly of the umbilical cord can be easily obtained and processed compared with embryonic or bone marrow stem cells. These cells may be a valuable source in the repair of spinal cord injury. METHODOLOGY/PRINCIPAL FINDINGS: We examine the effects of HUMSC transplantation after complete spinal cord transection in rats. Approximately 5x10(5) HUMSCs were transplanted into the lesion site. Three groups of rats were implanted with either untreated HUMSCs (referred to as the stem cell group), or HUMSCs treated with neuronal conditioned medium (NCM) for either three days or six days (referred to as NCM-3 and NCM-6 days, respectively). The control group received no HUMSCs in the transected spinal cord. Three weeks after transplantation, significant improvements in locomotion were observed in all the three groups receiving HUMSCs (stem cell, NCM-3 and NCM-6 days groups). This recovery was accompanied by increased numbers of regenerated axons in the corticospinal tract and neurofilament-positive fibers around the lesion site. There were fewer microglia and reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the stem cell group than in the control group. Transplanted HUMSCs survived for 16 weeks and produced large amounts of human neutrophil-activating protein-2, neurotrophin-3, basic fibroblast growth factor, glucocorticoid induced tumor necrosis factor receptor, and vascular endothelial growth factor receptor 3 in the host spinal cord, which may help spinal cord repair. CONCLUSIONS/SIGNIFICANCE: Transplantation of HUMSCs is beneficial to wound healing after spinal cord injury in rats

    Rapamycin attenuates PLA2R activation-mediated podocyte apoptosis via the PI3K/AKT/mTOR pathway

    Get PDF
    Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in adults without diabetes. Primary MN has been associated with circulating antibodies against native podocyte antigens, including phospholipase A2 receptor (PLA2R); however, precision therapy targeting the signaling cascade of PLA2R activation is lacking. Both PLA2R and the mammalian target of rapamycin (mTOR) exist in podocytes, but the interplay between these two proteins and their roles in MN warrants further exploration. This study aimed to investigate the crosstalk between PLA2R activation and mTOR signaling in a human podocyte cell line. We demonstrated that podocyte apoptosis was induced by Group IB secretory phospholipase A2 (sPLA2IB) in a concentration- and time-dependent manner via upregulation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mTOR, and inhibited by rapamycin or LY294002. Furthermore, aberrant activation of the PI3K/AKT/mTOR pathway triggers both extrinsic (caspase-8 and caspase-3) and intrinsic (Bcl-2-associated X protein [BAX], B-cell lymphoma 2 [BCL-2], cytochrome c, caspase-9, and caspase-3) apoptotic cascades in podocytes. The therapeutic implications of our findings are that strategies to reduce PLA2R activation and PI3K/AKT/mTOR pathway inhibition in PLA2R-activated podocytes help protect podocytes from apoptosis. The therapeutic potential of rapamycin shown in this study provides cellular evidence supporting the repurposing of rapamycin for MN treatment

    Outcomes and prognostic factors of simple partial cystectomy for localized bladder urothelial cell carcinoma

    Get PDF
    AbstractRadical cystectomy has remained the gold standard for recurrent superficial or muscle invasive bladder tumor. However, partial cystectomy still has a role in those who reject or have contraindications for radical cystectomy. In this study, we sought to identify predictors of bladder recurrence and overall survival after simple partial cystectomy. We included 27 patients with bladder tumor who received simple partial cystectomy without pelvic lymph node dissection between March 2000 and September 2013. Adjuvant chemotherapy or radiation therapy was prescribed according to the pathological results. Parameters were compared on the basis of bladder recurrence and overall survival. During a mean follow-up time of 39 months, five patients (18.5%) experienced bladder recurrence. An older age, a higher pathological stage, positive surgical margins, and distant metastases were significant predictors of overall survival (p = 0.031, p = 0.001, p = 0.001, and p = 0.011, respectively). Meanwhile, previous bladder instillation and positive surgical margins were significant predictors of bladder recurrence (p = 0.026 and p = 0.027, respectively). The rate of consecutive distant metastases (33.3%) was almost twice the rate of bladder recurrence (18.5%), and six patients developed consecutive distant metastases without first experiencing bladder recurrence. In patients who received a simple partial cystectomy as an alternative treatment, previous bladder instillation and positive surgical margins were significant predictors of bladder recurrence. Patients with an older age, positive surgical margins, and consecutive distant metastases had worse overall survival. Partial cystectomy with routine lymph node dissection may be a better option for achieving favorable long-term outcomes

    Using the Resistivity Imaging Method to Monitor the Dynamic Effects on the Vadose Zone During Pumping Tests at the Pengtsuo Site in Pingtung, Taiwan

    Full text link
    We conducted a time-lapse monitoring study during a well-pumping test at the Pengtsuo site in Pingtung, Taiwan. Water-level gauges were installed in four wells (P1, W1, O1, and O2) at the Pengtsuo site with different screen depths for the observation. We designed the pumping test to be executed in three phases: the background, the stepwise-pumping, and the continuous-pumping phases. The survey line crossed the four wells so that a comparison would be possible between the resistivity measurements and the water-level records. The resistivity differences relative to the pre-pumping background show that electrical resistivity imaging (ERI) can resolve changes due to dewatering from pumping activity. The time-lapse resistivity images reveal that the maximum resistivity increase took place at the locations in the vadose zone instead of at the groundwater surface. The variation in the resistivity differences in the vadose zone correlated to the change in groundwater level in the stepwise phase. On the other hand, the resistivity-difference change was not fully consistent with the groundwater-level change in the continuous-pumping phase. We attribute the abnormal ERI signals to the dynamic non-equilibrium of the water movement in the vadose zone. The findings suggest that pumping designs can affect the changing resistivity differences and water-content distribution patterns. We show the potential of the ER method to reveal both the water flow and water-content changes in the vadose zone with different transient boundary conditions

    Understanding the Mechanism of Deep Learning Frameworks in Lesion Detection for Pathological Images with Breast Cancer

    Get PDF
    With the advances of scanning sensors and deep learning algorithms, computational pathology has drawn much attention in recent years and started to play an important role in the clinical workflow. Computer-aided detection (CADe) systems have been developed to assist pathologists in slide assessment, increasing diagnosis efficiency and reducing misdetections. In this study, we conducted four experiments to demonstrate that the features learned by deep learning models are interpretable from a pathological perspective. In addition, classifiers such as the support vector machine (SVM) and random forests (RF) were used in experiments to replace the fully connected layers and decompose the end-to-end framework, verifying the validity of feature extraction in the convolutional layers. The experimental results reveal that the features learned from the convolutional layers work as morphological descriptors for specific cells or tissues, in agreement with the diagnostic rules in practice. Most of the properties learned by the deep learning models summarized detection rules that agree with those of experienced pathologists. The interpretability of deep features from a clinical viewpoint not only enhances the reliability of AI systems, enabling them to gain acceptance from medical experts, but also facilitates the development of deep learning frameworks for different tasks in pathological analytics

    Near-Surface Attenuation and Velocity Structures in Taiwan from Wellhead and Borehole Recordings Comparisons

    Full text link
    By analyzing the data from 28 seismic borehole stations deployed by the Central Weather Bureau Seismic Network throughout Taiwan from 2007 to 2014, we estimated the near-surface velocity (Vp and Vs) and attenuation (Qp and Qs) structures from surface to depths of approximately 300 m. To ensure that the deeper recordings were on the ray path between the seismic source and upper receiver, only events with an incidence angle of less than 35° were selected. Local magnitudes of analyzed events were between 1.1 and 6.6. The subsurface Qp and Qs were well modeled in the 5 - 40 Hz frequency band using the spectral ratio of direct P- and S-waves, respectively, at each station, under frequency-independent Q and ω2 source model assumptions. The estimated Vp in the Coastal Plain, the Western Foothills, the Longitudinal Valley, and the Yilan Plain were approximately 1000 - 2000 m s-1, which was lower than the Vp of 2500 - 4000 m s-1 in the Central Mountain Range. In addition, the Vs in the plain areas were lower than that in the Central Mountain Range. The low Vp and Vs and high Vp/Vs ratio in the Coastal Plain and the Western Foothills can be attributed to the unconsolidated soil and high pore-fluid content of subsurface sediments in the plain areas. In contrast to the velocity distribution, low Qp and Qs were observed in the Central Mountain Range. The low Qp and Qs with low Vp/Vs and low Qs/Qp ratios in the Central Mountain Range was consistent with the high thermal temperature observed in the field investigation. The obtained velocity and attenuation structures near surface could also provide important constraints in validation of the crustal structure of Taiwan
    • …
    corecore