23,225 research outputs found
Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons
We compute the contribution of order to the cross
section of a top-antitop pair in association with at least one heavy Standard
Model boson -- , , and Higgs -- by including all effects of QCD, QED,
and weak origin and by working in the automated MadGraph5_aMC@NLO framework.
This next-to-leading order contribution is then combined with that of order
, and with the two dominant lowest-order ones,
and , to obtain phenomenological results
relevant to a 8, 13, and 100~TeV collider.Comment: 27 pages, 8 figure
On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays
A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area
Weak corrections to Higgs hadroproduction in association with a top-quark pair
We present the calculation of the next-to-leading contribution of order
to the production of a Standard Model Higgs boson in
association with a top-quark pair at hadron colliders. All effects of weak and
QCD origin are included, whereas those of QED origin are ignored. We work in
the MadGraph5_aMC@NLO framework, and discuss sample phenomenological
applications at a 8, 13, and 100 TeV collider, including the effects of
the dominant next-to-leading QCD corrections of order .Comment: 29 pages, 38 figure
Decay of scalar variance in isotropic turbulence in a bounded domain
The decay of scalar variance in isotropic turbulence in a bounded domain is
investigated. Extending the study of Touil, Bertoglio and Shao (2002; Journal
of Turbulence, 03, 49) to the case of a passive scalar, the effect of the
finite size of the domain on the lengthscales of turbulent eddies and scalar
structures is studied by truncating the infrared range of the wavenumber
spectra. Analytical arguments based on a simple model for the spectral
distributions show that the decay exponent for the variance of scalar
fluctuations is proportional to the ratio of the Kolmogorov constant to the
Corrsin-Obukhov constant. This result is verified by closure calculations in
which the Corrsin-Obukhov constant is artificially varied. Large-eddy
simulations provide support to the results and give an estimation of the value
of the decay exponent and of the scalar to velocity time scale ratio
Entanglement entropy of the composite fermion non-Fermi liquid state
The so-called ``non-Fermi liquid'' behavior is very common in strongly
correlated systems. However, its operational definition in terms of ``what it
is not'' is a major obstacle against theoretical understanding of this
fascinating correlated state. Recently there has been much interest in
entanglement entropy as a theoretical tool to study non-Fermi liquids. So far
explicit calculations have been limited to models without direct experimental
realizations. Here we focus on a two dimensional electron fluid under magnetic
field and filling fraction , which is believed to be a non-Fermi
liquid state. Using the composite fermion (CF) wave-function which captures the
state very accurately, we compute the second R\'enyi entropy using
variational Monte-Carlo technique and an efficient parallel algorithm. We find
the entanglement entropy scales as with the length of the boundary
as it does for free fermions, albeit with a pre-factor twice that of the
free fermion. We contrast the results against theoretical conjectures and
discuss the implications of the results.Comment: 4+ page
The automation of next-to-leading order electroweak calculations
We present the key features relevant to the automated computation of all the
leading- and next-to-leading order contributions to short-distance cross
sections in a mixed-coupling expansion, with special emphasis on the first
subleading NLO term in the QCD+EW scenario, commonly referred to as NLO EW
corrections. We discuss, in particular, the FKS subtraction in the context of a
mixed-coupling expansion; the extension of the FKS subtraction to processes
that include final-state tagged particles, defined by means of fragmentation
functions; and some properties of the complex mass scheme. We combine the
present paper with the release of a new version of MadGraph5_aMC@NLO, capable
of dealing with mixed-coupling expansions. We use the code to obtain
illustrative inclusive and differential results for the 13-TeV LHC.Comment: 121 pages, 16 figure
Imaging and Nulling with the Space Interferometry Mission
We present numerical simulations for a possible synthesis imaging mode of the
Space Interferometer Mission (SIM). We summarize the general techniques that
SIM offers to perform imaging of high surface brightness sources, and discuss
their strengths and weaknesses. We describe an interactive software package
that is used to provide realistic, photometrically correct estimates of SIM
performance for various classes of astronomical objects. In particular, we
simulate the cases of gaseous disks around black holes in the nuclei of
galaxies, and zodiacal dust disks around young stellar objects. Regarding the
first, we show that a Keplerian velocity gradient of the line-emitting gaseous
disk -- and thus the mass of the putative black hole -- can be determined with
SIM to unprecedented accuracy in about 5 hours of integration time for objects
with H_alpha surface brigthness comparable to the prototype M 87. Detections
and observations of exo-zodiacal dust disks depend critically on the disk
properties and the nulling capabilities of SIM. Systems with similar disk size
and at least one tenth of the dust content of beta Pic can be detected by SIM
at distances between 100 pc and a few kpc, if a nulling efficiency of 1/10000
is achieved. Possible inner clear regions indicative of the presence of massive
planets can also be detected and imaged. On the other hand, exo-zodiacal disks
with properties more similar to the solar system will not be found in
reasonable integration times with SIM.Comment: 28 pages, incl. 8 postscript figures, excl. 10 gif-figures Submitted
to Ap
A VLSI pipeline design of a fast prime factor DFT on a finite field
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented
A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms
A parallel architecture for computation of the linear convolution of two sequences of arbitrary lengths using the Fermat number transform (FNT) is described. In particular a pipeline structure is designed to compute a 128-point FNT. In this FNT, only additions and bit rotations are required. A standard barrel shifter circuit is modified so that it performs the required bit rotation operation. The overlap-save method is generalized for the FNT to compute a linear convolution of arbitrary length. A parallel architecture is developed to realize this type of overlap-save method using one FNT and several inverse FNTs of 128 points. The generalized overlap save method alleviates the usual dynamic range limitation in FNTs of long transform lengths. Its architecture is regular, simple, and expandable, and therefore naturally suitable for VLSI implementation
- …