4 research outputs found
Weight-based Channel-model Matrix Framework provides a reasonable solution for EEG-based cross-dataset emotion recognition
Cross-dataset emotion recognition as an extremely challenging task in the
field of EEG-based affective computing is influenced by many factors, which
makes the universal models yield unsatisfactory results. Facing the situation
that lacks EEG information decoding research, we first analyzed the impact of
different EEG information(individual, session, emotion and trial) for emotion
recognition by sample space visualization, sample aggregation phenomena
quantification, and energy pattern analysis on five public datasets. Based on
these phenomena and patterns, we provided the processing methods and
interpretable work of various EEG differences. Through the analysis of
emotional feature distribution patterns, the Individual Emotional Feature
Distribution Difference(IEFDD) was found, which was also considered as the main
factor of the stability for emotion recognition. After analyzing the
limitations of traditional modeling approach suffering from IEFDD, the
Weight-based Channel-model Matrix Framework(WCMF) was proposed. To reasonably
characterize emotional feature distribution patterns, four weight extraction
methods were designed, and the optimal was the correction T-test(CT) weight
extraction method. Finally, the performance of WCMF was validated on
cross-dataset tasks in two kinds of experiments that simulated different
practical scenarios, and the results showed that WCMF had more stable and
better emotion recognition ability.Comment: 18 pages, 12 figures, 8 table
Automatic Sleep Stage Classification Based on Convolutional Neural Network and Fine-Grained Segments
Sleep stage classification plays an important role in the diagnosis of sleep-related diseases. However, traditional automatic sleep stage classification is quite challenging because of the complexity associated with the establishment of mathematical models and the extraction of handcrafted features. In addition, the rapid fluctuations between sleep stages often result in blurry feature extraction, which might lead to an inaccurate assessment of electroencephalography (EEG) sleep stages. Hence, we propose an automatic sleep stage classification method based on a convolutional neural network (CNN) combined with the fine-grained segment in multiscale entropy. First, we define every 30 seconds of the multichannel EEG signal as a segment. Then, we construct an input time series based on the fine-grained segments, which means that the posterior and current segments are reorganized as an input containing several segments and the size of the time series is decided based on the scale chosen depending on the fine-grained segments. Next, each segment in this series is individually put into the designed CNN and feature maps are obtained after two blocks of convolution and max-pooling as well as a full-connected operation. Finally, the results from the full-connected layer of each segment in the input time sequence are put into the softmax classifier together to get a single most likely sleep stage. On a public dataset called ISRUC-Sleep, the average accuracy of our proposed method is 92.2%. Moreover, it yields an accuracy of 90%, 86%, 93%, 97%, and 90% for stage W, stage N1, stage N2, stage N3, and stage REM, respectively. Comparative analysis of performance suggests that the proposed method is better, as opposed to that of several state-of-the-art ones. The sleep stage classification methods based on CNN and the fine-grained segments really improve a key step in the study of sleep disorders and expedite sleep research
Collaborative Sleep Electroencephalogram Data Analysis Based on Improved Empirical Mode Decomposition and Clustering Algorithm
Sleep-related diseases seriously affect the life quality of patients. Sleep stage classification (or sleep staging), which studies the human sleep process and classifies the sleep stages, is an important reference to the diagnosis and study of sleep disorders. Many scholars have conducted a series of sleep staging studies, but the correlation between different sleep stages and the accuracy of classification still needs to be improved. Therefore, this paper proposes an automatic sleep stage classification based on EEG. By constructing an improved empirical mode decomposition and K-means experimental model, the concept of “frequency-domain correlation coefficient” is defined. In the process of feature extraction, the feature vector with the best correlation in the time-frequency domain is selected. Extraction and classification of EEG features are realized based on the K-means clustering algorithm. Experimental results demonstrate that the classification accuracy is significantly improved, and our proposed algorithm has a positive impact on sleep staging compared with other algorithms
Effects of Plant Crown Shape on Microwave Backscattering Coefficients of Vegetation Canopy
A microwave scattering model is a powerful tool for determining relationships between vegetation parameters and backscattering characteristics. The crown shape of the vegetation canopy is an important parameter in forestry and affects the microwave scattering modeling results. However, there are few numerical models or methods to describe the relationships between crown shapes and backscattering features. Using the Modified Tor Vergata Model (MTVM), a microwave scattering model based on the Matrix Doubling Algorithm (MDA), we quantitatively characterized the effects of crown shape on the microwave backscattering coefficients of the vegetation canopy. FEKO was also used as a computational electromagnetic method to make a complement and comparison with MTVM. In a preliminary experiment, the backscattering coefficients of two ideal vegetation canopies with four representative crown shapes (cylinder, cone, inverted cone and ellipsoid) were simulated: MTVM simulations were performed for the L (1.2 GHz), C (5.3 GHz) and X (9.6 GHz) bands in fully polarimetric mode, and FEKO simulations were carried out for the C (5.3 GHz) band at VV and VH polarization. The simulation results show that, for specific input parameters, the mean relative differences in backscattering coefficients due to variations in crown shape are as high as 127%, which demonstrates that the crown shape has a non-negligible influence on microwave backscattering coefficients of the vegetation canopy. In turn, this also suggests that investigation on effects of plant crown shape on microwave backscattering coefficients may have the potential to improve the accuracy of vegetation microwave scattering models, especially in canopies where volume scattering is the predominant mechanism