112 research outputs found

    Performance evaluation of the 8-inch MCP-PMT for Jinping Neutrino Experiment

    Full text link
    Jinping Neutrino Experiment plans to deploy a new type of 8-inch MCP-PMT with high photon detection efficiency for MeV-scale neutrino measurements. This work studies the performance of the MCP-PMTs, including the photon detection efficiency, the charge resolution of the single photoelectron, the transition time spread, single photoelectron response, rates of dark counts and after pulses. We find a long tail in the charge distribution, and combined with the high photon detection efficiency, the overall energy resolution sees substantial improvements. Those results will be provided as the inputs to detector simulation and design. Our results show that the new PMT satisfies all the requirements of the Jinping Neutrino Experiment

    Responses of photosynthetic characteristics of oat flag leaf and spike to drought stress

    Get PDF
    Raising crops production via improving photosynthesis has always been focused. Recently excavating and increasing the photosynthetic capacity of non-leaf organs becomes an important approach to crops yield increase. Here we studied the photosynthetic characteristics of the flag leaf and the non-leaf organs including the sheath, the glume and the lemma under greenhouse. The relative water content (RWC), the stomatal characteristics, the photosynthetic pigment contents, the enzyme activities in C3 and C4 pathway and the malate content of the flag leaf and the non-leaf organs on 7, 14, 21, and 28 days after anthesis (denoted by 7DAA, 14DAA, 21DAA, and 28DAA) were determined under well-watered (CK) and water-stressed (D) treatments. Drought stress significantly reduced the RWC of the flag leaf and the non-leaf organs, while the variation of RWC in the glume and the lemma was lower than in the flag leaf. The chlorophyll a content, the chlorophyll b content, the total chlorophyll content and the xanthophyll content in the flag leaf were significantly decreased under D. However, drought stress significantly increased the photosynthetic pigment contents in the glume at the late stage (21DAA and 28DAA). In addition, the induced activities of PEPC, NADP-MDH, NADP-ME, NAD-ME, and PPDK in non-leaf organs under drought stress suggested that the C4 photosynthetic pathway in non-leaf organs compensated the limited C3 photosynthesis in the flag leaf. Non-leaf organs, in particular the glume, showed the crucial function in maintaining the stable photosynthetic performance of oat

    A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel

    Get PDF
    A small, highly sensitive, and electromagnetic interference (EMI)-immune refractive index (RI) sensor based on the Fabry-Perot (FP) interferometer is presented. The sensor’s FP cavity was fabricated by aligning two metal-deposited, single-mode optical fiber endfaces inside a microchannel on a silicon chip. The mirrors on the fiber endfaces were made of thermal-deposited metal films, which provided the high finesse necessary to produce a highly sensitive sensor. Microelectromechanical systems (MEMS) fabrication techniques, specifically photolithography and deep dry etching, were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. The RI change within the FP cavity was determined by demodulating the transmission spectrum phase shift. The sensitivity and finesse of the transmission spectrum were controlled by adjusting the cavity length and the thickness of the deposited metal. Our experimental results showed that the sensor’s sensitivity was 665.90 nm/RIU (RI Unit), and the limit of detection was 6 × 10−6 RIU. Using MEMS fabrication techniques to fabricate these sensors could make high yield mass production a real possibility. Multiple sensors could be integrated on a single small silicon chip to simultaneously measure RI, temperature, and biomolecule targets

    Probiotics for the treatment of depression and its comorbidities: A systemic review

    Get PDF
    Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities

    Muon Flux Measurement at China Jinping Underground Laboratory

    Full text link
    China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R\&D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset at the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be (3.53±0.22stat.±0.07sys.)×10−10(3.53\pm0.22_{\text{stat.}}\pm0.07_{\text{sys.}})\times10^{-10} cm−2^{-2}s−1^{-1}. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with the simulation accounting for Jinping mountain's terrain. A survey of muon fluxes at different laboratory locations situated under mountains and below mine shaft indicated that the former is generally a factor of (4±2)(4\pm2) larger than the latter with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for muon flux of an underground experiment

    Performance of the 1-ton Prototype Neutrino Detector at CJPL-I

    Full text link
    China Jinping Underground Laboratory (CJPL) provides an ideal site for solar, geo-, and supernova neutrino studies. With a prototype neutrino detector running since 2017, containing 1-ton liquid scintillator (LS), we tested its experimental hardware, performed the physics calibration, and measured its radioactive backgrounds, as an early stage of the Jinping Neutrino Experiment (JNE). We investigated the radon background and implemented the nitrogen sealing technology to control it. This paper presents the details of these studies and will serve as a key reference for the construction and optimization of the future large detector at JNE
    • …
    corecore