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Depression is one of the most common psychiatric conditions, characterized by

significant and persistent depressed mood and diminished interest, and often

coexists with various comorbidities. The underlying mechanism of depression

remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant

clinical trials and animal studies support the new notion that the gut microbiota

has emerged as a novel actor in the pathophysiology of depression, which

partakes in bidirectional communication between the gut and the brain through

the neuroendocrine, nervous, and immune signaling pathways, collectively

known as the microbiota-gut-brain (MGB) axis. Alterations in the gut

microbiota can trigger the changes in neurotransmitters, neuroinflammation,

and behaviors. With the transition of human microbiome research from studying

associations to investigating mechanistic causality, the MGB axis has emerged as

a novel therapeutic target in depression and its comorbidities. These novel

insights have fueled idea that targeting on the gut microbiota may open new

windows for efficient treatment of depression and its comorbidities. Probiotics,

live beneficial microorganisms, can be used to modulate gut dysbiosis into a new

eubiosis and modify the occurrence and development of depression and its

comorbidities. In present review, we summarize recent findings regarding the

MGB axis in depression and discuss the potential therapeutic effects of probiotics

on depression and its comorbidities.
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1 Introduction

Depression is a psychiatric syndrome that characterized by

slowed thinking, depressed mood, and reduced volitional activity

as its main symptoms, and is often accompanied by suicidal

tendencies and somatization symptoms, which pose a great threat

to human health. Depression causes a huge economic burden on

both families and society. Mounting evidence has shown a

predominant increasing trend in the prevalence of depression in

the general population (Weinberger et al., 2018), ranking 3rd leading

cause of global disability in healthy life years (Friedrich, 2017).

Currently, depression become the 4th most common illness in the

world, with a prevalence rate of nearly 4.4% in both developed and

developing countries (World Health Organization, 2017).

According to the data from WHO, it is estimated that depression

influences nearly 350 million people worldwide (Ledford, 2014),

resulting in more than 800,000 suicide deaths annually. By 2030,

depression is projected to rank as the first disease burden

worldwide. Recently, the current COVID-19 pandemic has led to

a great increase in depression, with an increase of nearly 53 million

cases globally, 27.6% above the pre-pandemic levels (Salari et al.,

2020). In China, depression is a major public health issue which has

been reported to be the second leading cause of disability-adjusted

life year (DALY) (Lu et al., 2021). According to the Blue Book on

Depression in China (2022), the China Mental Health Survey

reported that more than 95 million people suffering from

depressive disorders account for 6.8% of the total population in

China (Kessler and Bromet, 2013; Lu et al., 2021). Depression

results in annual medical and social costs of up to 49.4 billion yuan,

which has gradually become a major public health concern.

Depression not only increases emotional suffering in patients but

is also associated with an elevated prevalence of substantial present

and future complications, such as irritable bowel syndrome (IBS),

inflammatory bowel disease (IBD), heart disease, high cholesterol,

obesity, diabetes mellitus (DM), and Alzheimer’s disease (AD),

which will affect the quality of life (QoL) of these patients (Gold

et al., 2020). Thus, there is an urgent need for scientists worldwide

to address depression and its complications.

However, the pathogenesis of depression, which is important

for its prevention and treatment, has not yet been clarified.

Depression is caused by numerous environmental, genetic, and

psychological factors. Currently, the major hypotheses for the

development of depression include the monoamine reduction

hypothesis, overactivation of the hypothalamus-pituitary-adrenal

(HPA) axis, and the decrease in brain-derived neurotrophic factor

(BDNF) levels (Sonali et al., 2022). All these hypotheses are closely

related to the interaction of the gut-brain axis with the gut

microbiota, named the microbiota-gut-brain (MGB) axis. In

recent years, accumulating evidence has shown a close link

between the gut and the brain, and that the gut microbiota can be

involved in regulating brain development, anxiety, depression,

cognitive function, and other central nervous system (CNS)

activities (Adak and Khan, 2019; Ling et al., 2020; Simpson et al.,

2021; Cheng Y. et al., 2022; Khan et al., 2022; Li and Chen, 2022; Li

et al., 2022; Ling et al., 2022a; Ling et al., 2022b; Ling et al., 2022c;
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Ling ZX. et al., 2022). In patients with depression, neuronal

apoptosis occurs in the frontal cortex, hippocampus, and

amygdala, while the abnormalities of the metabolism, secretion,

inter-synaptic transmission, and reuptake of monoamine

transmitters such as norepinephrine, dopamine, and 5-

hydroxytryptamine (5-HT) take place in the synaptic gap (Farooq

et al., 2022; Suda and Matsuda, 2022; Zhu et al., 2022). Structural

imaging techniques have revealed that the dorsolateral prefrontal

cortex, superior parietal lobule hippocampus, and other parts of the

hippocampus are reduced in volume (Doney et al., 2022). These

responses are achieved through the immune, neuroendocrine, and

vagal pathways of the MGB axis, which can be affected by the gut

microbiota. In the immune pathway, the metabolites of the gut

microbiota, such as short-chain fatty acids (SCFAs) and indole, can

stimulate epithelial enterochromaffin cells (ECCs) to produce

glucagon-like peptide-1 (GLP-1), which plays a vital role in

reducing neuroinflammation (Cheng et al., 2019; Peirce and

Alviña, 2019; Farooq et al., 2022; Sonali et al., 2022). In addition,

gut dysbiosis-induced immune activation increases pro-

inflammatory cytokines and reactive oxygen/nitrogen species

levels, which leads to oxidative stress and causes hyperactivation

of the HPA axis (Bravo et al., 2011; Simpson et al., 2021; Sonali

et al., 2022). In the neuroendocrine pathway, various products of

the gut microbiota can influence brain function, including

neurotransmitters such as g-aminobutyric acid (GABA),

dopamine, serotonin, SCFAs, and tryptophan metabolites (Alli

et al., 2022; Sonali et al., 2022). In the vagal pathway, the gut

microbiota can modulate brain function through the vagus nerve.

Vagal sensory neurons form various mechanosensory and

chemosensory endings along the gastrointestinal tract that receive

enterocephalic signals (Liu et al., 2021a; Décarie-Spain et al., 2023).

In addition, ECCs can form synapses with adjacent nerves to assist

the vagus nerve in receiving intestinal signals (Bravo et al., 2011;

Sun et al., 2019; Snigdha et al., 2022). It is clear from the above that

the gut microbiota and its metabolites regulate brain function

through multiple pathways, which provides us with the novel idea

of treating CNS diseases by modulating the gut microbiota.
2 Alterations of the gut microbiota
in depression

Gut microbiota is a reservoir of trillions of bacteria, archaea,

viruses, parasites, and fungi that live in the gut, which has been

considered a forgotten organ of the human body. The gut

microbiota plays a crucial role in a wide array of host processes,

such as growth, development, physiology, immune regulation

(Wastyk et al., 2021), intestinal mucosal barrier (Paone and Cani,

2020), nutrition (Valdes et al., 2018), colonization resistance

(Ducarmon et al., 2019), and alterations in the gut microbiota are

related to the development of various intestinal and extraintestinal

diseases. During the past decades, scientists have made great efforts

to explore how large-scale disruptions and dynamic shifts in the gut

microbiota can drive phenotypic changes and disease states. With

the strong evidence displayed by multi-directional evidence, recent
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findings confirm that the gut microbiota composition can affect

brain development and behavior (Loughman et al., 2020; Carlson

et al., 2021; Kelsey et al., 2021). Currently, the gut microbiota is no

longer forgotten and has been called the “second brain” of the body

(Ridaura and Belkaid, 2015). It is now well accepted that the gut

microbiota is important for various brain processes such as

neurogenesis, myelination, and microglial activation, which can

also effectively regulate behavior and affect psychological processes

such as mood and cognition (Dinan and Cryan, 2016). Gut

dysbiosis can disturb the bidirectional crosstalk between the gut

microbiota and the CNS, leading to numerous neurological

conditions, including chronic pain, stress, anxiety, depression,

autism spectrum disorder (ASD), AD, and Parkinson’s disease.

Recently, increasing evidence has shown a link between gut

microbiota and depression via the MGB axis. In people with

depression, alterations in gut microbiota patterns are evident,

suggesting that the gut microbiota plays important roles in the

pathogenesis and onset of depression (Jiang et al., 2015; Zheng et al.,

2016; Ling et al., 2022a). The use of antibiotics can lead to gut

dysbiosis, disrupt intestinal homeostasis, and increase the risk of

depression (Hao et al., 2020). Changes in bacterial diversity and

richness in patients with depression have been observed in several

previous studies, although there was no consistent directional

alteration in microbial diversity. Our previous study found that

a-diversity increased significantly in adult patients with depression,

whereas bacterial b-diversity did not change significantly (Jiang

et al., 2015). However, the opposite patterns were found in

childhood depression (Ling et al., 2022a). Previous studies have

reported that several key functional bacteria at different taxonomic

levels are associated with depression. Our previous study found that

the decreased butyrate-producing bacteria (e.g., Faecalibacterium)

were associated with the enrichment of intestinal pathogenic

bacteria or opportunistic pathogens such as Enterobacteriaceae

(Jiang et al., 2015). Interestingly, the key functional genus,

Faecalibacterium, was correlated with the severity of depression

symptoms and the difficulty in abstract thinking negatively (Valles-

Colomer et al., 2019). Barandouzi et al. observed that depressed

patients had a lower abundance of Bacillus spp., Proteus spp., E.

faecalis, and Sartorius spp. and a higher abundance of Actinomyces

and Eggerthella spp (Barandouzi et al., 2020).. These key functional

bacteria were found to be correlated with the development of

depression significantly, but their causal effects on depression

remain unclear. Recently, animal models have emerged as

valuable experimental tools for host-microbiome interaction

research. Zheng et al. demonstrated that transferring the gut

microbiota from depressed humans to germ-free (GF) mice could

increase depression-like behavior in the recipient mice, supporting

a causal relationship between gut microbiota and depression (Zheng

et al., 2016). After successful antidepressant treatment, the

depression-associated key functional differential bacteria

decreased significantly compared to healthy controls, indicating

that the depressed gut microbiota tended to reconstitute (Li N. et al.,

2019; Farooq et al., 2022). Based on these clinical and preclinical

findings, we tentatively inferred that maintaining or restoring the

normal condition of the gut microbiota is associated with regression

depression. These interactions are often shown to be produced by
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the immune, neuroendocrine, and vagal pathways with the gut

microbiota and its metabolites via the MGB axis. Bacterial groups

assoc ia ted wi th gas t ro in tes t ina l inflammat ion (e .g . ,

Enterobacteriaceae, Eggerthella, and Desulfovibrio) were relatively

abundant in patients with depression, and these patients had fewer

anti-inflammatory SCFA-producing bacterial species, including

butyrate-producing E. faecalis and Clostridium XIVa (Simpson

et al., 2021). With the advent of multi-omics techniques, such as

metagenomics, metabolomics, proteomics, and culturomics,

depression-associated key functional bacteria can be identified

into species or strain levels, which allows us to clarify the specific

functions of the depressed bacteria and screen these species as

biomarkers for the intervention and treatment of depression and

related complications.

Traditionally, depression treatments target the brain with

psychotherapy and/or different drugs, such as 5-HT reuptake

inhibitors (SSRI), 5-HT, and norepinephrine reuptake inhibitors

(SNRI). However, the prevalence and burden of depression

remained unchanged (Malhi and Mann, 2018). Recent advances

have observed that these conventional treatments not only regulate

the brain directly (Cipriani et al., 2018), but also affect the gut

microbiota (Davey et al., 2013). Correcting abnormal gut

microbiota could alleviate depression, suggesting that targeting on

the gut microbiota could be considered as a promising and tractable

therapy for depression. The modulation of the gut microbiota has

been highlighted in the treatment of mental disorders, including

depression and its comorbidities. To explore more potential

possibilities for the treatment of depression, this review explored

the use of probiotics in depression and for diseases in which

depression is a co-morbidity. Here, we describe the pathogenesis

associated with the MGB axis in depression and discuss the

potential therapeutic effects of probiotics on depression and its

comorbidities, with the expectation that probiotics will become a

new and effective treatment for depression and its comorbidities in

the future.
3 Underlying mechanisms of the gut
microbiota in depression

There is growing evidence to support the role of the gut

microbiota in regulating host behavior and brain function.

Although the exact mechanisms by which the gut microbiota

causes or alters depression are not fully understood, the vast

evidence from previous clinical and preclinical studies supports the

hypothesis that the gut microbiota can affect the development of

depression, mainly through the HPA axis, inflammation, and modify

the abundance of BDNF. Clarifying the underlying mechanisms

between gut microbiota and depression can contribute to the

effective prevention and treatment of depression (Figure 1).
3.1 HPA axis

The HPA axis is a feedback pathway consisting of the

hypothalamus, pituitary, and adrenal glands and is involved in the
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control of the stress response. The HPA axis is an important

component of the MGB interaction (Cryan and O'mahony, 2011;

Frankiensztajn et al., 2020). Under normal conditions,

environmental, emotional, and physiological stressors increase the

systemic levels of pro-inflammatory cytokines, which in turn secrete

corticotropin-releasing hormone (CRH) by triggering secretion from

the paraventricular nucleus of the hypothalamus. Increased CRH

levels activate adrenocorticotropic hormone (ACTH) secretion from

the anterior pituitary. ACTH subsequently results in the release of

glucocorticoids from the adrenal cortex. When glucocorticoid levels

reach their peak, negative feedback regulation is triggered via the

GABA pathway, resulting in a decrease in cortisol secretion. This

constitutes a complete HPA axis pathway, which ensures the stability

of cortisol levels in vivo (Suda and Matsuda, 2022). However, this

mechanism is disrupted in patients with depression. As we know

before, the HPA axis is negatively regulated through the GABA

pathway, which proceeds by increasing glutamate reuptake by

presynaptic neurons when cortisol levels peak, and within the

neuron, glutamate is converted to GABA as a precursor, followed

by GABA exiting the neuron into the synaptic vesicles, crossing the

synaptic gap and binding to GABA receptors on the postsynaptic

membrane, thus establishing an aminobutyric acidergic synapse
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(Herman et al., 2004; Cullinan et al., 2008; Sarkar et al., 2011;

Colmers and Bains, 2018; Duman et al., 2019). GABA acts as an

inhibitory neurotransmitter that inhibits CRF neurons, ultimately

reducing the secretion of cortisol (Giordano et al., 2006). That is, the

GABA content is elevated during normal action. However, the

dexamethasone suppression tests observed lesser levels of GABA

levels in depressed patients which are unable to regulate excessive

cortisol levels (Carroll et al., 1981), while excessive cortisol levels can

lead to gut dysbiosis eventually (Łaniewski and Herbst-Kralovetz,

2022; Couch et al., 2023). Gut dysbiosis promotes the growth of

gram-negative bacteria, releases increased immunogenic

lipopolysaccharide (LPS), disrupts intestinal permeability, leads to

leaky gut and endotoxemia, and causes translocation of bacterial

components in the gut lumen due to the inflammatory response.

These inflammatory mediators in turn stimulate the HPA axis,

exacerbating its hyperactivation and promoting neuroinflammation,

leading to depressive behavior (Zheng et al., 2016; Liu et al., 2021b;

Sonali et al., 2022).

As mentioned above, high cortisol levels lead to a compromised

intestinal mucosal barrier, which allows T cells, giant cells, and

antigens to flow into the brain, activate microglia, and trigger

inflammation (Doney et al., 2022). It can also lead to

inflammation through the binding of effluent LPS to toll-like

receptor (TLR) on microglia (Qin et al., 2007). Indeed, excessive

microglial activation is the cornerstone of neuroinflammation.

Multiple factors can lead to its overactivation to produce

neuroinflammation and eventually lead to depression.
3.2 Inflammation

Inflammation is a key causative factor in the development of

depression. However, the exact mechanisms underlying inflammation-

related depression are still elusive. Typically, over-activation of the

HPA axis by stress can cause abnormally high cortisol levels and

disruption of the intestinal barrier, allowing the outflow of gut

microbiota-derived endotoxins into circulation. This causes increased

pro-inflammatory cytokines and decreased anti-inflammatory

cytokines, leading to peripheral inflammation, which is associated

with depressive symptoms. Some studies have reported increased

interleukin-1b (IL-1b) and interleukin-6 (IL-6) and decreased IL-4

and IL-10 in patients with depression (Berk et al., 2013; Wong et al.,

2016; Ling et al., 2022a). Then, pro-inflammatory factors cross the

blood-brain barrier (BBB) into the brain through blood circulation,

activating microglia, releasing reactive nitrogen and oxygen, and

damaging brain epithelial cells leading to neuroinflammation, which

can lead to mental illness (Peirce and Alviña, 2019; Doney et al., 2022).

At the same time, indoleamine 2,3-dioxygenase (IDO) is a key enzyme

in inflammation-induced depression. The pro-inflammatory factors

also activate IDO enzyme activity, which causes tryptophan to be

broken down into kynurenine rather than 5-HT, reducing 5-HT

concentrations (Peirce and Alviña, 2019; Walker et al., 2019).

Furthermore, pro-inflammatory factors disrupt tetrahydrobiopterin,

an essential factor for monoamine synthesis, leading to impaired

synthesis of 5-HT, dopamine, and other neurotransmitters (Dantzer

et al., 2008; Miller and Raison, 2016).
A

B
C

FIGURE 1

The main pathogenesis hypotheses for depression via the gut-brain
axis. As shown, the hypothalamus-pituitary-adrenal (HPA) axis of the
brain is activated by various stressors such as psychological stress and
the increased pro-inflammatory cytokines (A). Due to the disruption of
the g-aminobutyric acid (GABA) negative feedback in depression,
however, the HPA axis abnormally activated, leading to persistent
elevation of cortisol. High level of cortisol contributes to peripheral
inflammation and can disrupt the normal gut microbiota. Gut
dysbiosis, inflammation and other factors in combination lead to
impaired intestinal barrier function, called leaky gut, which manifests
as increased intestinal permeability, decreased intestinal villi length
and colonic crypts depth. Intestinal immune cells such as T cells,
macrophages, and so on, and gram-negative bacteria-produced
lipopolysaccharide (LPS) in the gut can translocate from gut into brain,
which can act on the microglia and lead to neuroinflammation. In
turn, the over-activated microglia can release amount of indoleamine
2,3-dioxygenase (IDO), interferon g (IFN-g) and so on, resulting in a
decrease in tryptophan metabolism to 5-hydroxytryptamine (5-HT)
and an increase in the neurotoxic kynurenine, quinolinic acid (B).
Meanwhile, neuroinflammation can reduce the level of brain-derived
neurotrophic factor (BDNF) that is produced in the atrophied
hippocampus and prefrontal cortex. Abnormally reduced plasminogen
activator inhibitor-1 (PAI-1) is also considered as a possible causative
agent (C). All these factors interact with each other and contribute to
the onset and worsening of depression.
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As mentioned earlier, fecal microbiota transplantation (FMT)

from depressed patients to GF mice causes morbidity in the mice.

Compared with normal mice, GF mice are immunocompromised

and lack regulatory T cells (Tregs) (Zheng et al., 2016). Thus, these

findings suggest a mediating role of the gut microbiota in immune

response and depression. Mason et al. found that anti-inflammatory

bacterial groups such as Bacteroides and the Clostridium leptum

subgroup are reduced in those diagnosed with depression (Mason

et al., 2020), suggesting that gut dysbiosis, especially the decrease of

these anti-inflammatory regulatory bacteria, plays an important

role in the pathophysiology of depression. Given the key role of

inflammation in depression, strong evidence has supported the

novel concept of the gut microbiota-inflammation-brain axis, in

which the gut microbiota can alter brain function through

inflammatory signaling pathways and affect depression-like

behavior. Thus, targeting the gut microbiota to modulate the

inflammatory response in individuals with depression may

represent a useful therapeutic approach for depression.
3.3 Decreased level of BDNF

BDNF is a neurotrophin that can regulate the growth and

plasticity of neurons and synapses (Bercik et al., 2011a). It is

distributed in the hippocampus widely and has been considered

as a key transducer of antidepressant effects. Generally, BDNF is

first synthesized a precursor protein, pro-brain-derived

neurotrophic factor (pro-BDNF), which is further processed into

the mature form by fibrinolytic enzymes. BDNF can increase

synaptic plasticity, promote neurogenesis, especially in the

hippocampus, and maintain and promote the developmental

differentiation and regeneration of various neurons, especially

pentraxin and dopaminergic neurons, whereas pro-BDNF induces

neuronal death and synaptic pruning (Bai et al., 2016). Fibrinolytic

enzymes are converted from fibrinogen in the presence of tissue

plasminogen activator, which can be inhibited by plasminogen

activator inhibitor-1 (PAI-1), leading to the accumulation of pro-

BDNF. Previous studies found that PAI-1 increases in the prefrontal

cortex and hippocampus of chronically stressed rats (Party et al.,

2019; Zhang W. et al., 2022). The decreased BDNF can be found in

patients with depression (Jiang et al., 2015; Youssef et al., 2018),

whereas antidepressant treatment can increase the levels of BDNF

(Martinotti et al., 2016). Kuhlmann et al. observed that the levels of

BDNF were negatively correlated with the severity of depression

(Kuhlmann et al., 2017). Serum BDNF levels correlate with

hippocampal volume, and insufficient BDNF levels can impair

neurogenesis and lead to the onset of depression (Erickson et al.,

2012; Von Bohlen Und Halbach and Von Bohlen Und Halbach,

2018). These findings suggest the possibility of using serum BDNF

level as an indicator of disease activity and treatment response.

Evidence from animal studies using GF, antibiotic-treated,

depression models, and FMT mice has also demonstrated lower

levels of BDNF in the hippocampus and cortex than in healthy

controls (Clarke et al., 2013; Jang et al., 2021; Suda and Matsuda,

2022). Gut eubiosis can increase the activation of cAMP response

element binding (CREB) in the hippocampus, prefrontal cortex,
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and amygdala, leading to an increase in BDNF production (Gerhard

et al., 2016; Methiwala et al., 2021). In addition, the gut microbiota

can modulate the conversion of pro-BDNF into BDNF.

Administration of microbiota products to mice increases BDNF

levels in the hippocampus (Carabotti et al., 2015; Maqsood and

Stone, 2016). Previous interventional studies have revealed that

probiotics can restore the levels of pro-BDNF and BDNF in various

brain regions which are related to the development of depression-

like behavioral phenotypes (Sun et al., 2018; Mohammed et al.,

2020). These findings suggest that re-establishment of the gut

microbiota may contribute to the increased levels of brain BDNF

and modulate host behavior.

The aforementioned mechanisms provide an introduction to

the pathogenesis of depression briefly. In fact, the causes of

depression are inconclusive and there are numerous hypotheses

about its pathogenesis, of which the above-mentioned are few and

incomplete. The premise we are dealing with is related to the gut

microbiota and can be treated with probiotics and other related

mechanisms. Based on the above mechanisms, we will explore the

existing targets that can act through probiotic therapy and explore

the possible applications of probiotics in the future, which often act

through the MGB axis interaction, reflecting the great role and

potential of the gut microbiota in regulating neurological diseases.
4 Therapeutic potential of probiotics
on depression

Various antidepressant agents are available to treat depression,

including monoamine oxidase inhibitors, tricyclic antidepressants,

selective SSRI, nonselective SNRI, selective norepinephrine

reuptake inhibitors, and other miscellaneous agents such as

mirtazapine (Keller et al., 2002; Cryan and Dinan, 2015).

However, nearly 30% of patients with depression are resistant to

any treatment. Thus, novel antidepressant agents and strategies are

required (Miyanishi and Nitta, 2021). Recent microbiota studies

have demonstrated a strong link between depression and the gut

microbiota. Miyaoka et al. has observed that the combination of

antidepressants and probiotics is more effective to treat drug-

resistant depression (Miyaoka et al., 2018). Preclinical studies and

clinical trials suggest that modifying the composition of the gut

microbiota via probiotic supplementation have been proven to be

beneficial in treating or preventing human diseases (Zhao et al.,

2018; Sanders et al., 2019; Edwards et al., 2020; Sun et al., 2021),

which may be a viable adjuvant treatment option for patients

with depression.

Probiotics are live microorganisms that, when administered in

adequate amounts, confer a health benefit to the host by changing

the composition of the host’s microbiota in a certain area (Hill et al.,

2014). They play a vital role in maintaining a healthy gut by

regulating the host mucosa and systemic immune function or by

regulating the balance of microbiota in the gut (Sánchez et al., 2017;

Clemente et al., 2018). Probiotics can tolerate stomach acid and bile

salts, adhere to host intestinal epithelial cells, and remove or reduce

the adhesion of pathogenic bacteria (Selle and Klaenhammer, 2013;

Ducarmon et al., 2019; Mazloom et al., 2019). Owing to their non-
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toxic side effects and high stability, probiotics are increasingly used

in the prevention and treatment of intestinal disorders such as IBS,

IBD, antibiotic-associated diarrhea, and other disorders (Park et al.,

2018; Glassner et al., 2020). Gut microbiota modulation with

probiotics has become a hot topic in the treatment of mental

disorders, including depression, although it is still in its infancy

stage. Probiotics acting via the MGB axis can influence brain

development, function, and behavior (Desbonnet et al., 2014;

Buffington et al., 2016). This has prompted growing interest in

the possibility of targeting the gut microbiota to beneficially impact

depression. The concept of “psychobiotics”, proposed by Dinan

et al., emphasizes the potential of probiotics in mental disorders

treatment (Dinan et al., 2013). Psychobiotics can convey benefits to

the host’s mental health via dynamic MGB crosstalk. An emerging

body of evidence suggests possible antidepressant effects resulting

from probiotic supplementation, which can normalize depression-

associated physiological outputs, such as corticosterone,

noradrenaline, BDNF, and immune function. The promising role

of probiotics in depression via in vivo and in vitro studies have laid a

strong foundation for clinical application. Several recent

randomized controlled trials (RCTs) have demonstrated that

probiotics can alleviate depressive symptoms in participants both

with and without a clinical diagnosis of depression effectively (Goh

et al., 2019; Amirani et al., 2020; Chao et al., 2020; Dehghani et al.,

2022). Probiotics exhibit antidepressant properties in the absence of

other therapeutic options (Nikolova et al., 2021). Thus, microbiota-

based interventions with probiotics may possess greater therapeutic

potential for depression treatment, which can be used as an adjunct

to current approaches (Table 1). Common probiotic strains, such as

Lactobacillus spp., Bifidobacterium spp., Akkermansia spp.,

Clostridium spp., and Enterococcus spp., have been used to treat

depression in clinical and animal studies, either as a single agent or

in combination with other potential psychobiotics (Figure 2).

However, it is important to note that these benefits are strain-

specific. We selected some strains that have already played an

effective role in the treatment of depression to illustrate the

specific mechanism of its action, clarify its dosage, periodicity,

and other key information in the current treatment regimen, and

pave the way for the further role of probiotics, which are expected to

become new options for the treatment of depression (Table 2).
4.1 Lactobacillus

Lactobacillus is one of the most widely used and intensively

studied probiotic bacteria in gut microbiota. Lactobacillus spp. are

anaerobic, gram-positive, peroxidase-negative, non-spore-forming

rods that grow better under the microaerobic condition. As one of

the inhabitants of the healthy microbiota in the human gut, vagina,

and oral cavity, Lactobacilli have been considered safe

microorganisms for the host health, with low pathogenic

potential, and lack the ability to transmit antibiotic resistance

factors to pathogens (Saarela et al., 2000). Thus, Lactobacilli

strains isolated from natural products have been proposed as

promising probiotic candidates. Several Lactobacilli strains have

been used as probiotics, including L. plantarum, L. fermentum, L.
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rhamnosus and L. casei, which are isolated from the gut and exert

various benefits to the host, including attenuation of anxiety and

cognitive improvement (Goldstein et al., 2015). Many previous

studies have demonstrated the beneficial effects of these

Lactobacilli strains on mood, anxiety, and cognition, which can

be considered as potential psychobiotics.

Among these Lactobacilli strains, L. rhamnosus must be

mentioned, which is acid- and bile-stable and has a strong affinity

for human intestinal mucosal cells. Many animal studies have found

that oral administration with one L. rhamnosus strain, L. rhamnosus

JB-1 (JB-1), demonstrates psychoactive and neuroactive properties.

JB-1 can change the levels of neurotransmitters in the brains of mice,

which in turn reduces stress-induced anxiety- and depression-related

behaviors (Bravo et al., 2011; Janik et al., 2016). JB-1 consistently

regulates the expression of GABAA and GABAB receptors in a region-

dependent manner in mice, restoring metabolites such as GABA and

glutamate to normal levels and reducing corticosterone levels (Tette

et al., 2022). Janik et al. reported that 25% of central GABA levels

could be elevated by four weeks of treatment with the JB-1 strain in

BALB/c mice (Janik et al., 2016). Interestingly, the antidepressant

effects of JB-1 depend on the intact vagus nerve connection between

the gut and brain (Bravo et al., 2011). Subphrenic vagotomy

prevented this effect, suggesting that the modulatory effect of JB-1

on GABA proceeds through the vagus nerve. JB-1 can directly

stimulate vagal afferent neurons in the gut, with signals uploaded

to the solitary bundle nucleus, followed by projections to the

paraventricular nucleus, ultimately activating the GABAergic

system, creating negative feedback, and lowering cortisol levels

(Bravo et al., 2011). In addition, JB-1 also results in modulating the

immune system and induces regulatory T cells, which have been

found to be both necessary and sufficient to mediate the behavioral

effects of bacteria (Liu et al., 2020). However, JB-1 can attenuate

stress-induced behavioral deficits successfully but fails to re-establish

the diversity and richness of the gut microbiota or correct the relative

abundances of specific bacteria that altered by stress. This suggests

that the neuroactive properties of beneficial microbes may not be

mediated by gut microbiota restoration, but be determined by their

functional activity (bacterial metabolites) and direct modulation of

host signaling pathways (Bharwani et al., 2017).

Another L. rhamnosus strain, L. rhamnosus GG (LGG), which

originates indigenously in the human gut, became available for use as a

probiotic in Finland in 1990. LGG colonization early in life increases

tight junction protein expression and immunoglobulin A production,

upregulates host immune responses, increases intestinal villus length

and colonic crypt depth, and enriches beneficial bacteria such as

Bifidobacterium and Akkermansia (Zhou et al., 2022). With its effects

on the increase in SCFAs-producing bacteria such as Bifidobacterium,

mice had significantly higher levels of acetate, which helped alleviate

anxiety (Strati et al., 2016). LGG has been found to increase GABA

concentrations in fermented adzuki bean milk under optimized culture

conditions (Song and Yu, 2018). In addition, LGG implantation can

also activate epithelial growth factor receptor expression, enhance

serotonin transporter protein expression, modulate the serotonergic

system in the gut, and increase the levels of BDNF and GABA receptors

in the amygdala and hippocampus (Cui et al., 2014; Johnson and

Foster, 2018), which can alleviate anxiety and depression symptoms
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TABLE 1 Clinical evaluation of probiotics on depression and its comorbidities.

Strains Study
design

Population
characteristics

Intervention Control/
placebo
group

Duration Clinical findings References

LGG HN001 RCT 380 women (14-16
weeks gestation)
Probiotics (n=193),
Placebo (n=187)

HN001 (6×109

CFU daily)
Corn-derived
maltodextrin

6m Lower depression scores:
HN001 mean = 7.7 (SD=5.4),
placebo 9.0 (SD=6.0), p=0.037

(Slykerman
et al., 2017)

L. plantarum
PS128

RCT 40 participants with
self-reported
insomnia
PS128 group
(n=21),
Placebo (n=19)

PS128 (6×1010

CFU) daily
microcrystalline
cellulose
(6×1010 CFU)
daily

30d ↓BDI-II scores (Ho et al.,
2021)

L. plantarum
PS128

A
Preliminary
open trial

11 patients with
MDD

Capsule
contained 3×1010

CFU of PS128
twice a day

/ 8w ↓HAMD-17 scores;
↓DSSS scores

(Chen HM.
et al., 2021)

L. plantarum 299v RCT 60 patients with
MDD
LP299v group (n =
30),
Placebo (n = 30)

capsule contained
10×109 CFU of
LP299v twice a
day

crystalline
cellulose powder

8w Improvement in APT and in
CVLT total recall of trials 1–5;
↓KYN;
↑3HKYN : KYN

(Rudzki et al.,
2019)

L. helveticus and B.
longum

three-arm
parallel
design,
RCT

81 patients with
MDD
Probiotics (n=28),
Prebiotics (n=27),
Placebo (n=26)

10×109 CFU per
5 g sachet/day

excipients 8w ↓BDI score;
↓kynurenine/tryptophan;
↑tryptophan/isoleucine

(Kazemi et al.,
2019)

L. paracasei
Shirota

RCT 69 patients with
depression
LcS group (n=38),
Placebo (n=31)

100 mL beverage
of LcS (1010CFU)

the same
fermented dairy
beverage
without any
bacteria

9w ↑Adlercreutzia, Megasphaera
and Veillonella;
↓Rikenellaceae_RC9_gut_group,
Sutterella and Oscillibacter;
↓IL-6;
Relieve constipation

(Zhang et al.,
2021)

L. paracasei
Shirota

A single-
arm trial

15 patients with
MDD and 3
patients with BD

2 bottles of
fermented milk
containing at
least 4.0×1010

CFU of LcS per
bottle (80 mL)
per day

/ 12w ↓HAMD21 (Otaka et al.,
2021)

B.longum
NCC3001

RCT 44 adults with IBS
and diarrhea or a
mixed-stool pattern
and mild to
moderate anxiety
and/or depression
BL group (n= 22),
Placebo (n = 22)

BL (1010 CFU/
1g)

maltodextrin 6w ↓HAD-D scores;
↑Quality of life score;
↓Responses to negative
emotional stimuli;
↓Urine levels of methylamines
and aromatic amino acids
metabolites

(Pinto-
Sanchez et al.,
2017)

B.breve CCFM1025 RCT 45 patients with
MDD patients (n =
45)
CCFM1025 group
(n = 20),
Placebo (n = 25)

CCFM1025 (1010

CFU) daily
maltodextrin 4w ↓HDRS-24 scores;

↓MADRS scores;
↓BPRS scores;
↓GSRS scores;
↓Serum serotonin turnover

(Tian et al.,
2022)

B.bifidum BGN4
and B.longum
BORI

RCT 63 healthy elders
(≥65 years)
Probiotics (n=32),
Placebo (n=31)

Two capsules
twice per day
(1×109 CFU of
BGN4 and BORI)

soybean oil 12w ↓Eubacterium, Allisonella,
Clostridiales, and Prevotellaceae;
↑BDNF;
↓Mental flexibility score;
↓Stress score

(Kim CS.
et al., 2021)

Mixture (B.bifidum
W23,B.lactis W51,

RCT 71 participants with
depressive

Two 2g sachets
of mixture for

two 2g sachets
daily of the

8w Reduction in cognitive reactivity (Chahwan
et al., 2019)

(Continued)
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(Xu J. et al., 2022). Neufeld et al. observed that dietary supplementation

with the probiotic LGG alone or in combination with the prebiotics

polydextrose and galactooligosaccharide can ameliorate stress-induced

increases in anxiety-like behavior (Mcvey Neufeld et al., 2019).

However, the anti-depressive benefits are dependent on live LGG,

while treatment with the heat-inactivated form of LGG had no effect.

Two other strains of Lactobacillus, L. rhamnosus CCFM1228

and L. paracasei CCFM1229, can alleviate anxiety- and depression-

related behaviors in animal models, which may be achieved by

regulating the activity of xanthine oxidase (XO) in brain (Xu M.
Frontiers in Cellular and Infection Microbiology 08
et al., 2022). In fact, several anxiety- and depression-related

indicators such as immobility time in the forced swimming test

(FST), serum corticosterone level, and hippocampal BDNF

concentration were significantly associated with XO activity in the

cerebral cortex. XO activity is significantly increased in patients

with depression, and xanthine and XO produce superoxide anions

and free radicals that generate oxidative stress, leading to cellular

damage and death. Xanthines synthesized via the pentose

phosphate pathway can cross the BBB easily to the amygdala and

act on oligodendrocytes via purine receptors on the cell surface,
TABLE 1 Continued

Strains Study
design

Population
characteristics

Intervention Control/
placebo
group

Duration Clinical findings References

B. lactis W52, L.
acidophilus W37,
L. brevis W63, L.
casei W56, L.
salivarius
W24, L.lactis W19
and L.lactis W58)

symptoms
Probiotics (n = 34),
Placebo (n = 37)

each day (total
cell count
1 × 1010 CFU/
day

freezedried
maize-starch
and
maltodextrins

Streptococcus
thermophilus
NCIMB 30438,
B.breve NCIMB
30441, B.longum
NCIMB 30435,
B.infantis NCIMB
30436,
L.acidophilus
NCIMB 30442,
L.plantarum
NCIMB 30437,
L.paracasei
NCIMB 30439,
L.delbrueckii subsp.
Bulgaricus NCIMB
30440

RCT 47 patients with
current depressive
episodes
Probiotics (n=21),
Placebo (n= 26)

Probiotic mixture
(900 billion CFU/
day)

maltose 4w ↓HAM-D scores;
↑Lactobacillus;
↑Gray matter volume in
calcarine sulcus;
Alter putamen’s activation
during emotion processing

(Schaub et al.,
2022)

probiotic NVP-
1704, a mixture of
L. reuteri NK33
and B. adolescentis
NK98

RCT 156 healthy adults
with subclinical
symptoms
NVP-1704 group
(n = 78),
Placebo (n = 78)

NVP-1704 (2.0 ×
109 CFU for
NK33 and 0.5 ×
109CFU
for NK98) daily

maltodextrin 8w Reduction in depressive
symptoms
Improvement in sleep quality;
↓IL-6;
↑Bifidobacteriaceae;
↑Lactobacillacea;
↓Enterobacteriaceae

(Lee et al.,
2021)

Mixture
(containing L.
fermentum LF16,
L. rhamnosus
LR06, L.
plantarum LP01,
and B. longum
BL04)

RCT 38 healthy
volunteers
Probiotics group
(n=19),
Placebo group
(n=19)

probiotic mixture
(4 × 109

CFU/AFU) daily

maltodextrin 6w Improvement in mood;
Reduction in depressive mood
state, anger, and fatigue;
Improvement in sleep quality

(Marotta
et al., 2019)
3HKYN, 3-hydroxykynurenine; AFU, active fluorescent unit; AhR, aryl hydrogen receptor; APT, Attention and Perceptivity Test; B. adolescentis, Bifidobacterium adolescentis; B. bifidum,
Bifidobacterium bifidum; B. breve, Bifidobacterium breve; B. infantis, Bifidobacterium infantis; B. lactis, Bifidobacterium lactis; B. longum, Bifidobacterium longum; BAI, Beck Anxiety Inventory;
BD, Bipolar Disorder; BDI, Beck Depression Inventory; BDI-II, Beck Depression Inventory-II; BDNF, Brain-derived neurotrophic factor; CERAD-K, The Korean version of the Consortium to
Establish a Registry for Alzheimer’s Disease; CFU, colony forming units; CRS, chronic restraint stress; CVLT, California Verbal Learning Test Total; DSSS, Depression and Somatic symptoms
Scale; EPM, the elevated plus-maze; FST, the forced swimming test; GPX2, glutathione reductase 2; GSRS, Gastrointestinal Symptom Rating Scale; HAD-D, HAD-depression; HAMD-17,
Hamilton Depression Rating Scale-17 items; HAMD-21, Hamilton Depression Rating Scale-21 items; HDRS-24, Hamilton Depression Rating scale-24 Items; IBS, Irritable Bowel Syndrome; IL-
1b, interleukin-1b; IL-6, interleukin 6; IL-8, interleukin 8; ILA, indole-3-lactic acid; KYN, kynurenine; L. acidophilus, Lactobacillus acidophilus; L. brevis, Lactobacillus brevis; L. casei,
Lactobacillus casei; L. delbrueckii, Lactobacillus delbrueckii; L. fermentum, Lactobacillus fermentum; L. helveticus, Lactobacillus helveticus; L. paracasei, Lactobacillus paracasei; L. plantarum,
Lactobacillus plantarum; L. salivarius, Lactobacillus sailvarius; LGG HN001, Lactobacillus rhamnosus GG HN001; MADRS, Montgomery-Asberg Depression Rating Scale; MDD, major
depression; NF-kB, nuclear factor kappa B; NQO1, NAD(P) H dehydrogenase; Nrf2, nuclear factor erythroid 2-related factor 2; RCT, randomized controlled trial; SOD2, superoxide dismutase 2;
STAI1, State-Trait Anxiety Inventory 1; TNF-a, tumor necrosis factor alpha.
↓: downregulation; ↑: upregulation.
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causing abnormal activation and proliferation of oligodendrocytes,

leading to local neuronal hyperactivation in the fear center. L.

paracasei CCFM1229 significantly upregulated the expression of

Grin1, Grin2a, and Grin2b, and enhanced synaptic plasticity in

depressed mice (Xu M. et al., 2022). It could also maintain the

structural and functional stability of myelin by upregulating Mbp

mRNA expression. Myelin loss and oligodendrocyte dysfunction

may be involved in depression pathogenesis. In contrast to LGG,

both live and heat-killed L. paracasei PS23 can reverse chronic

corticosterone-induced anxiety- and depression-like behaviors

(Wei et al., 2019). L. rhamnosus CCFM1228 can enhance

astrocyte function in depressed mice by upregulating Gfap mRNA

expression significantly. L. rhamnosus CCFM1228 significantly

downregulates CD36 mRNA expression, which is upregulated in

depressed mice, and CD36 deficiency may influence depression-like

behavior by altering the gut microbiota and inflammatory pathways

(Xu M. et al., 2022). In addition, taurine deficiency may lead to

oxidative stress as well as reduced total N-acetylaspartate levels in

neurodegenerative diseases, which can be restored by

supplementation with L. rhamnosus JB-1 (Devkota et al., 2012;

Kochalska et al., 2020). Of course, other Lactobacillus strains, alone

or in combination with other microorganisms, have also been

investigated for their roles and possible mechanisms in anti-

depressive behavior.
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4.2 Bifidobacterium

Like Lactobacillus, Bifidobacterium is a commonly used

probiotic bacterium. Bifidobacterium spp. is a genus of gram-

positive, non-motile, rod-shaped, sometimes bifurcated at one

end, strictly anaerobic bacteria that are widely found in the

human and animal digestive tract. Most probiotic Bifidobacterium

strains have shown positive effects on human health.

Bifidobacterium inhibits the proliferation of harmful bacteria,

ameliorates the function of the gastrointestinal mucosal barrier,

and protects against pathogens. With the growing recognition of the

existence of the MGB axis, recent studies have identified that

Bifidobacterium can affect the functioning of the brain and CNS,

leading to alterations in behavior, and cognitive abilities of humans

and animals. Aizawa et al. found that lower fecal counts of

Bifidobacterium in depressed patients than that in healthy

controls, suggesting that Bifidobacterium plays an important role

in the pathogenesis of depression (Aizawa et al., 2016). In GF rats,

Bifidobacterium can successfully inhibit elevated HPA axis and

depression-like behaviors (Messaoudi et al., 2011). Kazem et al.

demonstrated that a significant improvement in depression and

well-being status was obtained after the administration of probiotic

Bifidobacterium spp. for 8 weeks (Kazem et al., 2021).

Several strains of Bifidobacterium such as B. adolescentis, B.

dentium, and B. infantis exert beneficial effects in reducing anxiety-

and depression-like behaviors, which are related with the production

of GABA. These GABA producers can bioconvert monosodium

glutamate to GABA (Barrett et al., 2012). Bifidobacterium can

biosynthesize GABA from glutamate by the action of glutamate

decarboxylase, and then transport it extracellularly by the action of

the glutamate GABA antiporter. One efficient GABA producer, B.

adolescentis 150, can attenuate depression-like behavior during the

FST conducted on BALB/c mice (Yunes et al., 2020). Guo et al. also

found that B. adolescentis exhibits antidepressant and anxiolytic

effects, which are associated with a reduction in inflammatory

cytokines and re-establishment the gut microbiota (Guo et al.,

2019). Another Bifidobacterium strain, B. breve CCFM1025, exerts

an antidepressant-like effect by reshaping the gut microbiota,

increasing the production of beneficial metabolites, attenuating the

HPA axis and inflammation, upregulating BDNF expression, and

downregulating c-Fos expression in the brain (Tian et al., 2020). In

one RCT, Tian et al. observed that B. breve CCFM1025 can attenuate

depression and associated gastrointestinal disorders by altering the

gut microbiota and gut tryptophan metabolism (Tian et al., 2022),

suggesting that B. breve CCFM1025 is a promising psychobiotic

candidate. Interestingly, B. breve CCFM1025 can normalize the

abundance of SCFA-producing species such as Heterobacterium

spp., Clostridium faecium, and Clostridium tumefaciens in patients

with depression, whereas B. longum subsp. infantis E41 significantly

reduced the elevated abundance of Veillonellaceae and Desulfovibrio

(Tian et al., 2022). 5-hydroxytryptophan (5-HTP), a precursor

substance of 5-HT and a key neurotransmitter that can cross the

BBB, links bidirectional gut-brain communication, making it possible

for the brain and gut to maintain a host’s health jointly. Intestinal and

serum 5-HTP were positively correlated with brain 5-HT levels. Tian
FIGURE 2

Therapeutic effects of probiotics on depression and its
comorbidities. Probiotics exert antidepressant effects at multiple
targets. Supplementation of probiotics can increase beneficial
microorganisms and reduce harmful ones to achieve new gut
eubiosis. Meanwhile, they can produce beneficial substances such
as 5-hydroxytryptamine (5-HT), short-chain fatty acids (SCFAs) and
brain-derived neurotrophic factor (BDNF) and so on by themselves
or indirectly through upregulation of beneficial microbiota, which
can act on various receptors on the intestinal epithelium such as
EGFR, CREB, Nr3C1, etc. Moreover, probiotics can enhance
intestinal barrier function in a variety of ways, such as upregulating
mucus production by goblet cells, enhancing zonula occludens-1
(ZO-1), occludin, and claudin-1 expression, and reducing
inflammation. Probiotics can also regulate brain function and
improve neurological function through the vagus nerve, glucagon-
like peptide-1 (GLP-1) pathway, etc. And it can activate the immune
system to produce anti-inflammatory factors, alleviating circulatory
inflammation and neuroinflammation while downregulating the
hyperactive microglia and hypothalamus-pituitary-adrenal (HPA)
axis. Similarly, decreased xanthines levels and elevated geraniol
levels can also reduce inflammation.
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TABLE 2 Animal studies of probiotics on depression and its comorbidities.

Strains Animals Intervention Control/
placebo
group

Duration Clinical findings References

L.
rhamnosus
JB-1

Adult male BALB/c mice
(n = 36)
JB-1 group (n = 16),
Control group (n = 16)

JB-1 (109CFU) daily Broth
without
bacteria

28d Induced region-dependent alterations in
GABA mRNA in the brain;
↓Corticosterone;
↓Depression-related behavior

(Bravo et al.,
2011)

L.
rhamnosus
JB-1

48 male Wistar rats
Control group (n= 10),
JB-1 group (n= 19),
Placebo (n = 19))

JB-1(3.4 × 108 CFU) daily by
oral gavage

PBS 4w ↑GSH;
↑Glutamate;
↑tNAA

(Kochalska
et al., 2020)

L.
rhamnosus
JB-1 and L.
reuteri 6475

15 male BALB/c mice
JB-1 group (n=5),
L.reuteri 6475 (n=5),
Placebo (n=5)

orally gavaged with JB-1 (2 ×
109) or L. reuteri 6475 (2 ×
109) daily

PBS 2w Modulated the activity of interferon
signaling, JAK/STAT, and TNF-a via NF-
kB pathways;
↑FKBP1A, SNRPN, CELF4, GPM6B,
APBB1, NCDN,
RUNDC3A, CPE, CLSTN1

(Haas-Neill
et al., 2022)

B. longum
and L.
rhamnosus

50 male Wistar rats
5 groups (n=10) each
Control group,
CUMS group,
FOS/GOS group,
BL group,
Lr group

BL/Lr (1 × 1010 CFU) saline 28d Ameliorate the CUMS‐induced loss of
weight and depressive‐like behaviors;
↓Colonic 5‐HT;
↑Central 5‐HT;
Modulate gut microbiota disturbed by
CUMS

(Li H. et al.,
2019)

L.
rhamnosus
zz-1

60 male C57BL/6 mice,
5 groups (n = 12) each
CUMS group,
L.Rzz 9 group,
L.Rzz 8 group,
L.Rzz 7 group,
Control group

zz-1 (2 × 109/108/107 CFU) saline 6w ↑Body growth rate;
↑Sucrose preference;
↓Immobility time;
↑Curiosity and mobility;
↓ACTH, CORT;
↑CRF;
↑5-HT, NE, and DA;
↑BDNF and TrkB;
↓Intestinal damage;
↓Intestinal inflammation;
↑Firmicutes;
↑Firmicutes/Bacteroidetes;
↑Lachnospiraceae NK4A136 group;
↓Bacteroidetes, Bacteroides, and
Muribaculum

(Xu J. et al.,
2022)

L. reuteri
NK33 and
B.
adolescentis
NK98

42 male C57BL/6 mice
6 groups (n=7) each
(NC, C, PC, NK33,
NK98, and Mix)

NK33 (1 × 109 CFU)
NK98 (1 × 109 CFU)
Mix (1 × 109 CFU 1:1
mixture of NK33 and NK98)

maltose
buspirone

5d ↓LPS;
↓GC;
↓IL-6;
↑BDNF;
↓NF-kB activation;
↓Proteobacteria;
↓Suppress anxiety/depression;
Activated microglia infiltration;
Suppress IS-induced colon shortening,
myeloperoxidase activity

(Jang et al.,
2019)

L.
delbrueckii

32 C57BL/6J mice
4 groups (n=8) each
normal control group,
control + Lac group,
model group,
model + Lac group

109 CFU of Lac daily by oral
gavage

saline 7d ↑ZO-1 and E-cadherin;
↓Overactivation of microglia;
↑DAT;
↓IL-1b, TLR4, and NLRP3;
Inhibited dysbiosis

(Qiu et al.,
2021)

L. casei 20 male Sprague-Dawley
rats
4 groups (n=5) each
CUMS+Lac,
CUMS+paroxetine,
CUMS+saline,
Saline

L. casei
(8 × 108 CFU)

saline 4w ↑Body growth rate;
↑Sucrose preference;
↓Immobility time;
↑Moving distance and velocity;
Amend the gut microbiota structure
changes;
↑NE, DA, 5-HT, BDNF, TrkB, NR1;

(Gu et al.,
2020)
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TABLE 2 Continued

Strains Animals Intervention Control/
placebo
group

Duration Clinical findings References

↓Activations of ERK1/2 and p38 MAPK
signal pathways

L. helveticus
and B.
longum

47 male Syrian hamsters
divided into 3 groups
placebo group(n=7),
low dose group(n=20),
high dose group(n=20)

Low dose:109 CFU daily
High dose:1010 CFU daily

excipients 14d ↑IL-4, IL-5, and IL-10;
↑Social avoidance;
↓Social interaction;
↓Microbial richness

(Partrick
et al., 2021)

L. paracasei
HT6

24 Wistar rats
4 groups (n=6) each
control + Pro,
MS + Pro,
M+P+S+Pro,
MS+S−M + Pro

109 CFU as the fixed dose
(starting
from 20 µl on PND-2 to 100
µl on PND-16 with an
incremental
increase in volume of 20 µl
for every 3 days)

/ 15d Beneficial effect on anxiety-like behavior;
Normalize levels of ACTH, CORT, GR, 5-
HT, DA, NA;
Prevent stress-associated GluR1-GR
altered interactions

(Karen et al.,
2021)

B. dentium Adult germ-free mice
germ-free (MRS broth):
males=27, females=30,
live B.dentium: males=28,
females=29,
live B.ovatus: males=5,
females=5,
heat-killed B.dentium:
males =5, females=5.

oral-gavaged with 6.4 × 107

CFU of live B dentium, 6 ×
107 CFU of live B ovatus, 6.4
× 107 CFU of heat-killed B
dentium

sterile MRS
broth

2w ↑5-HT;
↑Fecal acetate;
↑5-HT receptors 2a, 4, and serotonin
transporter

(Engevik
et al., 2021)

B. dentium 74 adult Swiss Webster
germ-free mice
B.dentium group (n=33),
heat-killed B.dentium
(n=10),
control group (n=31)

oral gavage with 3.2×108

CFU B.dentium
sterile MRS
broth

2w ↑Goblet cell markers, Klf4, Tff3, Muc2,
Relm-b;
↑Glycosyltransferases;
↑Acidic mucin-filled goblet cells;
↑Autophagy mediated calcium signaling

(Engevik
et al., 2019)

B. dentium 90 male C57BL/6J mice
randomly divided into 11
groups including control
group and B.dentium N8
group

B.dentium N8
(1×109 CFU)

sterile silk
milk

21d ↑Adhesion ability;
↓Escherichia coli ATCC 25922 adhesion
to HT-29 cells;
↑TEER;
↓Paracellular permeability of Caco-2 cells;
↑ZO-1, occludin, and claudin-1 mRNA
expression;
↓TLR4 and pro-inflammatory cytokines
(TNF-a, IL-1b, IL-6) mRNA expression

(Zhao et al.,
2021)

B.
adolescentis

Male ICR mice
Exp1:5 groups (n=10)
Con group,
Ami group,
Bif 0.25 group,
Bif 0.5 group,
Bif 1 group
Exp2:3groups (n=12)
Con group,
CRS group,
Bif+CRS group

Exp1:0.25/0.5/1.0×109 CFU
B. adolescentis
Exp2:0.25×109 CFU B.
adolescentis

Exp1:10
mL/kg
distilled
water
Exp2:10
mL/kg
distilled
water

21d ↑The time spent in the center of the OFT
apparatus, the percentage of entries into
the open arms of the EPM and the
percentage of time spent in the open arms
of the EPM;
↓Immobility duration in the tail
suspension test and the FST;
↑Lactobacillus;
↓Bacteroides;
↓IL-1b, TNF-a, NF-kB p65, Iba1;
↑BDNF

(Guo et al.,
2019)

L.
plantarum
90sk and B.
adolescentis

48Male BALB/c mice
4 groups (n=12) each
Mixture of strains group,
Fluoxetine group (10 mg/
kg),
Monosodium glutamate
group 2.5 mg (100 mg/
kg),
Distilled water group

108 CFU LP90sk and 107

CFU B. adolescentis 150 daily
/ 14d Decrease the duration of immobility of

mice in FST
(Yunes et al.,
2020)
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TABLE 2 Continued

Strains Animals Intervention Control/
placebo
group

Duration Clinical findings References

B. breve
CCFM1025

40 chronically stressed
male adult C57BL/6 mice,
4 groups (n=10) each
control,
CUMS,
Fluoxetine,
CCFM1025

CCFM1025 of 0.1 ml/10g
body weight, 109 CFU/mL
daily.

vehicle 5w Alleviate the hyperactive HPA axis and
inflammation;
Restore the abnormal gut microbiota;
↓the pCREB-c-Fos Pathway;
↑BDNF;
↑SCFAs;
↑5-HTP

(Tian et al.,
2020)

B. breve M-
16V

CSDS male C57BL/6J
mice 4 groups(n=11-22)
each
control,
control with M-16V,
CSDS,
CSDS with M-16V

AIN-93G diet containing
B.breve of 5.0×109 nonviable
cells/
0.5 g daily

AIN-93G
diet

33d Suppress IL-1b increase in the PFC and
HIP
↑Time in the interaction zone;
↓Time in the corner zone;
↓Bacteroidia;
↑Bifidobacterium

(Kosuge et al.,
2021)

A.
muciniphila

72 mice randomized to 8
groups
donor CB (n= 10),
donor CRS (n= 20),
RE-CB (n = 6),
RE-CRS (n = 6),
RE-CRS-AKK (n= 6),
RE-CB-DSS (n = 8),
RE-CRS-DSS (n = 8),
RE-CRS-AKK-DSS (n =
8)

100 mL of A. muciniphila
containing 1×108 bacteria
daily

PBS 14d Restore colonic mucus;
Modify the gut microbiota;
↑a-diversity;
↑Verrucomicrobia, Akkermansia, and
Ruminiclostridium;
↓Immobility time in the TST and FST;
↑Movement distance in the OFT;
↑Colon length;
↓Histopathological scores

(Chen T.
et al., 2021)

A.
muciniphila

24 C57BL/6J mice
3 groups (n=8) each
low-fat diet group,
HFD group,
HFD+P9 group
28 C57BL/6J mice
WT: HFD (n=8),
HFD+P9 (n=8),
IL-6-KO: HFD (n=6),
HFD+P9 (n=6)

P9 from A.muciniphila
(100mg per mouse) daily

PBS 8w ↑GLP-1;
↑Uncoupling protein 1

(Yoon et al.,
2021)

A.
muciniphila

Exp1: female C57BL/6
mice (each group n=3-5)
PBS group,
BAA-835 group
Exp2: female Lgr5-EGFP
mouse (each group n=3-
5)
PBS group,
PBS+R+M group,
BAA-835+R+M group

A.muciniphila of 8 × 108

CFU per dose daily
PBS 4w Accelerate the proliferation of Lgr5+ ISCs;

Promote the differentiation of paneth cells
and goblet cells;
↑Acetic and propionic acids;
Reduce gut damage;
↑Intestinal epithelial regeneration

(Kim S. et al.,
2021)

A.
muciniphila

36 C57BL/6 male mice,
6 groups (n=6) each
CRS group,
CRS+AKK group,
AKK group,
CRS+Lactobacillus L
group,
CRS+Lactobacillus H
group, Control group

AKK (1×108 CFU) via
gavage

PBS 3w ↓GC;
↑BDNF;
↑DA;
↑OFT;
↓FST, TST;
↑The total distance;
↑b-alanyl-3-methyl-l-histidine;
↑Edaravone;
↑Verrucomicrobia;
↓Epsilonbacteraeota, Patescibacteria,
Chlorofexi, and Acidobacteria

(Ding et al.,
2021)

C.
butyricum
RH2

28 male adult SD rats
4 groups (n=7) each
sham,
stress,
stress + RH2,

RH2 of 1 × 109 CFU/ml/day/
rat) by gastric
gavage

vehicle 17d ↓ACTH;
↓CORT;
↑BDNF;
↓PAI-1;
↓FST;

(Zhang W.
et al., 2022)
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also found that B. breve M2CF22M7 and B. longum subsp. infantis

E41 have antidepressant effects in mice, partly by improving the

secretion of 5-HTP, reversing the deficits in hippocampal 5-HT, and

increasing BDNF levels in the prefrontal cortex (Tian P. et al., 2019).

A previous study also found that chronic stress impaired the negative

feedback of corticosterone in the HPA axis by down-regulating the

glucocorticoid receptors (Nr3c1), leading to glucocorticoid resistance,

which is also coincident with a high level of inflammation. B. breve

CCFM1025 normalizes the expression of Nr3c1 to reduce cortisol
Frontiers in Cellular and Infection Microbiology 13
levels (Tian et al., 2020). In addition, the presence of glutamate

decarboxylase genes in Bifidobacteria may mediate GABA

production, which can complement GABA levels and enhance the

negative feedback regulatory mechanism of cortisol, as exemplified by

B. adolescentum (Duranti et al., 2020). Higher levels of pro-

inflammatory cytokines lead to the onset and progression of

depression-related behaviors, whereas Bifidobacteria are known for

their ability to counter inflammation (Dyakov et al., 2020). An

increase in pro-inflammatory cytokines, namely IL-6, IL-1b, tumor
TABLE 2 Continued

Strains Animals Intervention Control/
placebo
group

Duration Clinical findings References

positive control
(Reserpine)

↑The central area distance, the total
distance, and the average speed

C.
butyricum
WZMC1018

30 male C57BL/6J mice,
3 groups (n = 10) each
control group,
CUMS group,
Cb group

Cb of 2.5×108 CFU/day/mice the
equivalent
milk

4w ↑5-HT;
↑BDNF;
↑GLP-1;
↑GLP-1R

(Sun et al.,
2018)

C.
butyricum
miyairi 588

66 male C57BL/6 mice
CBM588/stress group
(n=25),
placebo/stress group (n
=25)
the mice not exposed to
CSDS (n=7 in the
probiotics group,
n=9 in the placebo group)

sterile water containing
miyairi 588 (>5×106/CFU)

sterile
water

28d ↓IL-1b, IL-6, and TNF-a;
↑Firmicutes;
Relieve intestinal dysfunction and
hippocampal microglial activation

(Tian T. et al.,
2019)

EF2001 152 male ddY mice
Sham group,
OBX group,
OBX+EF-2001 group

EF-2001 (250 mg/kg) once a
day in a
volume of 0.1 mL/10g mouse
body weight

water 28d ↑Myelin and paranodal proteins;
↑p-cAMP-CREB expression;
↑p-NFkB p65 expression in astrocytes, p-
signal transducer and activator of STAT3
expression;
↓Immobile time;
↑Grooming time;
↑BDNF;
↑LIF

(Takahashi
et al., 2022)

EF2001 239 male ddY mice
Exp1:
Water group,
DSS 1.5% group,
DSS 1.5%+EF-2001
group,
DSS 1.5%+DEX group
Exp2:
vehicle-treated water
group,
vehicle-treated DSS group

EF-2001 (250 mg/kg) solvent 20d ↓TNF-a, IL-6;
↓Caspase-3;
↑Hippocampal neurogenesis
↑NF-kB p65 expression
↑XIAP

(Takahashi
et al., 2019)

EC-12 Male C57BL/6J mice
EC-12 group (n = 8),
Control group (n = 8)

AIN-93M diet with heat-
killed EC-12 at a
concentration of 0.125%

AIN-93M
basal diet

4w ↑OFT;
↑EPM;
↓FST;
↑Adrb3 and Avpr1a;
↑Butyricicoccus and Enterococcus

(Kambe et al.,
2020)
5-HT, 5-hydroxytryptamine; 5-HTP, 5-hydroxytryptophan; A. muciniphila, Akkermansia muciniphila; ACTH, adrenocorticotropic hormone; B. dentium, Bifidobacterium dentium; C.
butyricum, Clostridium butyricum; CBM588, Clostridium butyricum miyairi 588; CFSS, chronic foot shock stress; CLSTN1, Calsyntenin-1; CORT, corticosterone; CPE, Carboxypeptidase E;
CRS, chronic restraint stress; CSDS, chronic social defeat stress; CUMS, chronic unpredictable mild stress; d, day; DA, dopamine; DAT, dopamine transporter; EC-12, Enterococcus faecalis EC-
12; EF 2001, Enterococcus faecalis 2001; FOS/GOS, fructo-oligosaccharide and galactooligosaccharide; GABA, g-aminobutyric acid; GC, Glucocorticoid; GLP-1, glucagon-like peptide-1; GR,
glucocorticoid receptor; HFD, high-fat-diet; HPA, hypothalamic-pituitary-adrenal; IL-10, interleukin 10; IL-4, interleukin 4; IL-5, interleukin 5; ISCs, intestinal stem cells; JAK/STAT, The Janus
kinase/signal transducers and activators of transcription; Klf4, Krüppel-like factor 4; LIF, leukemia inhibitory factor; LPS, lipopolysaccharide; m, month; MAPK, mitogen-activated protein
kinase; miR, microRNAs; NA, noradrenaline; NE, noradrenaline; NMDAR, N-methyl-D-aspartic acid receptor 1; OFT, open field test; PAI-1, plasminogen activator inhibitor 1; pCREB,
phosphorylated cAMP-response-element-binding; SCFA, short-chain fatty acid; Tff3, Trefoil factor 3; tNAA, total N-acetylaspartate; TNF-a, tumor necrosis factor-a; TrkB, tyrosine kinase
receptor B; TST, tail suspension test; w, week; XIAP, X-linked inhibitor of apoptosis protein; ZO-1, zonula occludens 1.
/: no found; ↓: downregulation; ↑: upregulation.
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necrosis factor a, and C-reactive protein (CRP), participate actively in
the development of depression. B. bifidum TMC3115 suppresses the

stress-induced increase in IL-6 levels and reduces inflammation,

which can alleviate stress-induced inflammatory responses (Yoda

et al., 2022). In addition, Bifidobacterium can promote the production

of Foxp3+ Tregs mediated by SCFAs to limit the inflammatory

response in peripheral tissues (Arpaia et al., 2013; Smith et al.,

2013). In contrast to the findings in LGG, Kosuge et al. observed

that heat-sterilized B. breve M-16V can prevent depression-like

behavior and IL-1b expression induced by chronic social defeat

stress through modulation of gut microbiota composition in mice

(Kosuge et al., 2021). These findings suggest that Bifidobacterium

could be used as a potential psychobiotics for the prevention and

treatment of depression.
4.3 Akkermansia muciniphila

A. muciniphila is a gram-negative anaerobic bacterium,

representative of the phylum Verrucomicrobia, a symbiotic

bacterium widely distributed in the mucus layer of the human

intestine, which lives by breaking downmucin (Derrien et al., 2008).

Due to its beneficial effects in many diseases, it has attracted much

attention and research from the academic community and has

become a new generation of probiotics. Several studies have shown

that A. muciniphila can influence glucose and lipid metabolism, and

intestinal immunity, while certain food ingredients, like

polyphenols, can increase the abundance of A. muciniphila in the

gut. The abundance of A. muciniphila is significantly reduced under

certain medical conditions. A. muciniphila is negatively associated

with DM and obesity. Recent studies indicate that several

neurological disorders, including amyotrophic lateral sclerosis,

depression, AD, and ASD, disrupt the abundance of A.

muciniphila (Wang et al., 2011; Blacher et al., 2019; Li B. et al.,

2019; Mcgaughey et al., 2019). A. muciniphila has emerged as the

“sentinel of the gut”, which can promote gut barrier integrity, enrich

butyrate-producing bacteria modulate immune responses, and

inhibit inflammation (Ouyang et al., 2020). Given its higher

abundance in healthy mucosa, Akkermansia has been suggested

as biomarker of healthy intestines (Mcgaughey et al., 2019).

A. muciniphila feeds on mucin in the mucus layer of the

intestine, thereby settling in the intestine and protecting it from

pathogens via competitive rejection (Remely et al., 2015; Kim et al.,

2022). Colonic mucus is heavily dependent on the release of MUC2,

a hydrated glycosylated protein produced by cupped cells that

adheres to the colonic surface to prevent invasion by luminal

microbes and pathogens (Mcgaughey et al., 2019). A. muciniphila

can improve MUC2 expression and increase the number of cupped

and MUC2 cells to strengthen the colonic mucosal barrier in

recipient mice (Chen T. et al., 2021). At the same time, A.

muciniphila breaks down mucin to produce SCFAs, such as

acetate and propionate, to play a regulatory role. SCFAs can

alleviate oxidative stress and inflammatory responses through the

GLP-1 pathway, as well as act in intestinal Treg homeostasis or

directly through the BBB to increase the levels of neurotransmitters

such as glutamine, glutamate, and GABA in the hypothalamus of
Frontiers in Cellular and Infection Microbiology 14
mice, exerting an antidepressant effect (Zhai et al., 2019). In socially

defeated animals, the decrease of Akkermansia spp. was correlated

with the behavioral metrics of both anxiety and depression

positively. McGaughey et al. found that reduction of fecal

Akkermansia spp. in mice exhibited decreased center time during

the open field test (OFT), indicating increased anxiety-like

behavior, as well as decreased sucrose preference, suggesting

increased anhedonia (Mcgaughey et al., 2019). Generally,

supplementation with A. muciniphila may improve gut dysbiosis

due to depression. Ding et al. found that A. muciniphila reduces

depression-like behaviors induced by chronic stress by regulating

gut dysbiosis and metabolic disorders related to the gut microbiota

(Ding et al., 2021). A. muciniphila increases the level of

Akkermansia and decreases the relative abundance of

Helicobacter, Lachnoclostridium, Candidatus_Saccharimonas, and

Eubacterium_brachy, promoting the re-establishment of gut

microbiota (Ding et al., 2021). Increased Clostridium tumefaciens

abundance after A. muciniphila treatment is negatively correlated

with the number of microglia, which may exert an anti-

neuroinflammatory effect. In addition to gut microbiota

modulation, the antidepressant effect of A. muciniphila positively

correlates with an increase in metabolites, such as edaravone and b-
alanyl-3-methyl-l-histidine (Ding et al., 2021). Edaravone increased

serotonin concentrations significantly, whereas b-alanyl-3-methyl-

l-histidine increased the levels of dopamine (Ding et al., 2021). A.

muciniphila administration may also reduce the degradation of

geraniol, which has neuroprotective and anti-inflammatory

activities and may alleviate depression (Deng et al., 2015; Ding

et al., 2021). In addition, Amuc_1100, the outer membrane protein

of A. muciniphila, also plays an important and direct role in the

crosstalk between A. muciniphila and its host. Cheng et al. found

that Amuc_1100 can improve chronic unpredictable mild stress

(CUMS)-induced depression-like behavior and CUMS-induced

downregulation of serotonin in the serum and colon of mice,

restore gut dysbiosis, upregulate BDNF, and inhibit inflammation

in the hippocampus (Cheng et al., 2021). Recently, they also found

that the Amuc_1100D80, a truncated protein with 80 amino acids

truncated at the N-terminus of Amuc_1100, shows a better

antidepressant effect on modifying CUMS-induced depression-

like behavior in mice than Amuc_1100 does (Cheng R. et al.,

2022). Taken together, both human and animal studies have

consistently reported that increasing A. muciniphila abundance

can be a potential method for treating depression- and anxiety-

like behaviors. Direct and compelling evidence from future

comprehensive pre-clinical analyses and well-designed clinical

studies is necessary to explore the therapeutic potential of A.

muciniphila in depression.
4.4 Clostridium butyricum

Clostridium butyricum is a gram-positive anaerobic bacterium

that can generate SCFAs by consuming undigested dietary fiber,

mainly butyrate and acetate. It has a strong ability to survive

independently of stomach and bile acids. C. butyricum plays an

important role in regulating the gut microbiota, which has been
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safely used as a probiotic for decades. It is increasingly utilized in

the treatment of various human diseases, including intestinal injury,

gut-acquired infection, IBS, IBD, neurodegenerative diseases,

metabolic diseases, and colorectal cancer (Lynch and Pedersen,

2016). Generally, C. butyricum promotes the proliferation of

beneficial Bifidobacteria, Lactobacilli, and anthropoid bacteria,

reducing pathogens and providing benefits to the intestinal

microbial ecosystem (Hagihara et al., 2018; Miao et al., 2018).

Previous studies have found that exposure to chronic or acute

psychosocial stress decreases the level of Clostridium spp. in the

cecum (Bailey et al., 2011), while mental stress increases the levels of

peripheral IL-6 and chemokine CCL2, and the expression of TLR3

and TLR4 in the prefrontal cortex of suicidal patients with

depression, leading to hyperactivation of microglia (Garcıá Bueno

et al., 2016; Park et al., 2018). Recently, many preclinical studies have

shown that Clostridium spp. alone or in combination with other

antidepressants can be used to treat depression (Sun et al., 2018; Tian

T. et al., 2019). Liu et al. found that C. butyricum can be considered as

a safe and economical therapeutic option to treat mental disorders,

which can influence the gut microbiota-butyrate-brain axis in mice

(Liu et al., 2015). A specific phenotype of C. butyricum, C. butyricum

MIYAIRI 588 (CBM588), was isolated from the feces of a Japanese

person firstly. CBM588 has been used as a probiotic in humans and

domestic animals, exerting a variety of beneficial health effects.

Hagihara et al. first reported that the administration of CBM588

improved the ecosystem of the gastrointestinal tract in mice

significantly, modulating the gut microbiota composition,

increasing the numbers of Bifidobacterium, Coprococcus, and

Bacteroides, enhancing butyrate production, and reducing epithelial

damage (Hagihara et al., 2018). They also found that CBM588

treatment caused a functional shift of the gut microbiota toward

increased carbohydrate metabolism (Hagihara et al., 2019). Tian et al.

found that 28-day preventive treatment with CBM588 improved

depression-like behaviors in mice with chronic social defeat stress

(Tian T. et al., 2019). CBM588 can alter the composition of the gut

microbiota, induce a higher abundance of C. perfringens, and produce

more butyrate, exerting a regulatory effect of SCFAs on the MGB axis

and reducing depression-like behavior. Simultaneously, CBM588

prevents stress-induced activation of hippocampal inflammatory

microglia by reducing cytokines, including IL-1b, IL-6, and TNF-a
(Tian T. et al., 2019). In a model of CUMS-induced depression, Sun

et al. observed that the administration of C. butyricum CGMCC 9830

reversed depression-like behavior, increased hippocampal BDNF and

5-HT levels, and improved intestinal GLP-1 levels (Sun et al., 2018).

GLP-1 is secreted by intestinal L cells distributed in the ileum and

colon, and changes in the gut microbiota can affect GLP-1 levels,

which are closely related to CNS function (Reimann et al., 2008). By

producing metabolic butyrate, Clostridium spp. has been implicated

in depression through HPA-axis perturbation and damage to

intestinal permeability by combining G-protein receptor 43

(GPR43) and GPR41 and regulating NF-kB and PPARg signaling

(Lührs et al., 2002; Van DeWouw et al., 2018). In a recent prospective

open-label trial, Miyaoka et al. found that subjects with treatment-

resistant major depressive disorder (MDD) receiving CBM588 (60
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mg/d) in combination with antidepressants (flvoxamine, paroxetine,

escitalopram, duroxetine, and sertraline) reported significantly lower

median scores across several indices (BDI, HAMD-17, and BAI

scores) than those in the control group (Miyaoka et al., 2018).

Although these preclinical and clinical studies have shown the

efficacy and safety of C. butyricum in depression, future larger-scale

RCT on depression should be conducted to provide clearer

recommendations for C. butyricum application and evaluate its

possible mechanisms.
4.5 Enterococcus faecalis

Enterococcus faecalis is a gram-positive, facultative anaerobic,

lactic acid bacterium belonging to the phylum Firmicutes. E. faecalis

is a normal resident of the gut in many hosts (Garcıá-Solache and

Rice, 2019) and is generally believed to be harmless. Some strains of

E. faecalis with beneficial effects are used as probiotics and starter

cultures in the dairy industry, whereas other strains of E. faecalis

contribute to the development of nosocomial infections and cause

bacteremia, endocarditis, or urinary tract infections. Strain-specific

differences in probiotic, pathogenic, and commensal E. faecalismay

depend on their interaction with the host. Thus, E. faecalis has

received substantial attention owing to its ‘dualistic’ behavior

toward human health.

E. faecalis 2001 (EF-2001), one biogenic lactic acid bacterium,

has been used as a probiotic to improve immunity and exert

antitumor activity in mice (Choi et al., 2016; Gu et al., 2017).

Takahashi et al. demonstrated that 20-day administration of EF-

2001 can prevent colitis-induced depression-like behavior via the

MGB axis in mice, which can reduce rectal and hippocampal

inflammatory cytokines such as TNF-a and IL-6 and facilitate the

NF-kB p65/XIAP pathway in the hippocampus (Takahashi et al.,

2019). Olfactory bulbectomized (OBX) mice is a valuable

experimental animal model for MDD, which expresses various

depression-like behaviors such as anhedonia, memory

impairment, and reduction in sexual contact (Takahashi et al.,

2018). Recently, EF-2001 was shown to prevent OBX-induced

depression-like behaviors through the regulation of prefrontal

cortical myelination via the enhancement of CREB/BDNF and

NF-kB p65/LIF/STAT3 pathways (Takahashi et al., 2022). In

addition, this group also found that the anti-dementia effects of

EF-2001 in OBX mice are associated with the enhancement of

hippocampal neurogenesis via the ERK-CREB-BDNF pathway

(Takahashi et al., 2020). Another Japanese group observed that

male mice fed a diet supplemented with heat-killed E. faecalis strain

EC-12 showed decreased anxiety-like behavior in OFT and elevated

plus-maze test , which can increase the expression of

neurotransmitter receptor genes such as Adrb3, Avpr1a, and

Drd5, and improve the gut dysbiosis (Kambe et al., 2020). These

findings suggest that some strains of E. faecalis have the potential to

alleviate depressive symptoms. Future studies are required to

explore the antidepressant effects and the exact mechanism of

action of E. faecalis in the human brain.
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5 Probiotic treatment for depression-
related comorbidities

A large body of evidence has demonstrated that depression is

not only more common with other psychiatric disorders; for

example, up to 90% of patients with anxiety disorders present

with co-morbid depression (Tiller, 2013), but it is also highly

comorbid and occurs together with many physical diseases, such

as IBS, IBD, and metabolic syndromes such as DM and obesity. A

common pathological mechanism of co-morbidity is a prerequisite

for the administration of the same drug to achieve common

remission. To understand if probiotics have this potential, we

have addressed recent advances in the application of probiotics in

depression-related disorders, which will provide novel therapeutic

options for these co-morbid disorders associated with depression.
5.1 Irritable bowel syndrome

IBS is a chronic dysfunction of the gastrointestinal system

characterized by altered bowel habits and abdominal pain in the

absence of biochemical or structural abnormalities, primarily

manifesting as diarrhea, constipation, or both. IBS affects

approximately 7% to 21% of the global population (Chey et al.,

2015). Based on the Rome IV criteria, which was updated in June

2016, the gold standard for the diagnosis of IBS is the exclusion of

other diseases (Mearin et al., 2016). Patients with IBS are

categorized into four subtypes based on their predominant stool

habits: IBS-C (constipation, 20-30%), IBS-D (diarrhea, 38-50%),

IBS-M (mixed type, 6-16%), and IBS-U (unclassified, 24-60%). The

pathophysiology of IBS is not fully understood, but evidence

suggested that abnormalities in the composition or metabolic

activity of the gut microbiota are associated with its progression

(Han et al., 2022). Increasing studies have suggested that the MGB

axis plays a role in IBS.

IBS is frequently associated with psychiatric comorbidities such

as depression and gut-brain crosstalk is thought to contribute to its

development (Ray, 2017). A significant association between IBS and

MDD has been reported previously, and most patients with IBS

identify stress and anxiety as symptom aggravators (Lacy et al.,

2007). Lee et al. reported significantly higher levels of depression

and anxiety in patients with IBS than in healthy controls (Lee et al.,

2017). Midenfjord et al. also found that patients with IBS who

suffered from psychological distress reported more severe

gastrointestinal symptoms (Midenfjord et al., 2019). Recent

evidence suggests that gut dysbiosis can be considered one of the

fundamental theories that can explain both physical and mental

symptoms in patients with IBS. Alterations in the gut microbiota,

MGB axis, and neuro-immune system may be the cornerstone of

the association between IBS and depression (Mudyanadzo et al.,

2018). A systematic review identified that patients with comorbid

IBS and anxiety/depression had lower a-diversity, higher levels of
Proteobacteria, Prevotella/Prevotellaceae, and Bacteroides, and

lower abundance of Lachnospiraceae than the controls (Simpson

et al., 2020). This suggests that microbiota modulation with specific
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probiotics or other microecological regulators may be a useful

therapeutic approach for depression-related disorders, such as IBS.

In fact, recent findings suggest that probiotics may improve host

health in patients with IBS both physically and mentally (Le

Morvan De Sequeira et al., 2021; Zhang T. et al., 2022). The

safety and efficacy of probiotics in the treatment of IBS are

supported by numerous clinical studies. A systematic review and

network meta-analysis of 43 RCTs involving 5,531 IBS patients

provided data regarding the best probiotic species used in the

treatment of IBS (Zhang T. et al., 2022). Several probiotic strains,

such as B. bifidum, B. infantis, L. casei, L. acidophilus, L. plantarum,

Bacillus coagulans, C. butyricum, and Saccharomyces boulardii

alone or in combination, have been used to treat depression in

patients with IBS. Among these probiotic strains, B. coagulans

exhibited the highest probability of being the optimal probiotic

species for improving IBS symptom relief rate, as well as global

symptoms, bloating, abdominal pain, and straining scores. L.

plantarum ranked first in improving the QoL of patients with IBS

and had the lowest incidence of adverse events. B. coagulans can

promote intestinal digestion, maintain host microbiota

homeostasis, and regulate the host immune system, and has been

studied in the treatment of several human diseases. Recently, a

double-blind RCT reported that B. coagulans MTCC 5856 as a

single probiotic agent at a dose of 2 × 109 spores (CFU) per day

showed robust efficacy in the treatment of patients with IBS

symptoms and MDD (Majeed et al., 2018). B. coagulans MTCC

5856 could improve the Montgomery-Asberg Depression Rating

Scale (MADRS), and Hamilton Rating Scale for Depression (HAM-

D) scores, indicating that it may be a new optional approach for the

management of depression in patients with IBS. B. coagulans

MTCC 5856 can produce SCFAs (such as acetic, propionic, and

butyric acid), neurotransmitters, and antimicrobial and anti-

inflammatory substances, which could be the possible mechanism

of action in alleviating depression symptoms. In addition, this

probiotic significantly reduced the level of myeloperoxidase (an

inflammatory biomarker), which is responsible for the production

of free radicals. Another placebo-controlled trial observed that the

probiotic B. longum NCC3001 reduced depression, but not anxiety

scores, and increased the QoL in patients with IBS (Pinto-Sanchez

et al., 2017). These improvements were associated with changes in

the brain activation patterns, indicating that this probiotic reduces

limbic reactivity. Despite these promising findings, there is still

limited evidence for the efficacy of probiotic intervention in patients

with IBS and depression, as the benefit of probiotics tends to be

symptom- and strain-specific. Further prospective, larger-scale

trials with extended follow-up durations, as well as a detailed

assessment of the therapeutic effects of specific probiotic

supplementation, are critical prior to managing depression in

patients with IBS with probiotics in clinical practice.
5.2 Inflammatory bowel disease

IBD, including Crohn’s disease (CD) and ulcerative colitis

(UC), is an idiopathic, lifelong, and destructive chronic

inflammatory condition of the gastrointestinal tract that affects
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tens of millions of people worldwide (Mulder et al., 2014). The

pathogenesis of IBD is incompletely understood, although the

major fac tors influencing IBD may inc lude genet ic ,

environmental, and microbial determinants (Jakubczyk et al.,

2020). Recently, gut microbiota has been increasingly recognized

as a critical and central factor in IBD. There is a growing consensus

that inappropriate activation of the immune system by commensal

bacteria underlies IBD.

The disease burden of IBD includes not only the physiological

manifestations of the disease but also psychological and social

burdens. Although the link between IBD and psychological

disorders remains unclear, patients with IBD have a high

prevalence of depression and anxiety. Psychological symptoms

appear to be more prevalent in active disease states, with no

difference in prevalence between CD and UC. The comorbid

prevalence of depressive symptoms was 25.2%, and 38.9% of

patients with active IBD had depression (Barberio et al., 2021).

Compared to those who do not show psychiatric symptoms,

patients with IBD suffering from depression have a decreased

remission, and patients demonstrating depression show a more

severe illness over a longer period of time (Stasi and Orlandelli,

2008). Chen et al. have summarized that depression in IBD may

arise through an “IBD-inflammation-kynurenine pathway-

depression” association (Chen LM. et al., 2021). Thus,

encouraging screening and treatment of these comorbid

psychiatric disorders may improve the prognosis of patients

with IBD.

Gut dysbiosis is commonly observed in IBD patients with

depression, generally with increased Firmicutes and reduced

Proteobacteria (Chen DL. et al., 2021; Yuan et al., 2021). Weis

et al. also observed that disorganized gut microbiota and disturbed

metabolism were found in patients with active UC accompanied by

depression and anxiety, which could increase systematic

inflammation (Weis et al., 2019). The altered gut microbiota in

patients with IBD can disturb bidirectional communication in the

gut-brain axis, which might be associated with potential

consequences for the CNS. The gut dysbiosis in IBD patients with

depression represents a potential therapeutic target. The

modulation of the gut microbiota using probiotics can alter the

behavioral response in IBD, which has been increasingly studied in

mouse models. Mice subjected to dextran sodium sulfate (DSS)-

induced acute IBD-like colitis demonstrate behavioral changes,

including anxiety-like behaviors and cognitive deficits. In DSS-

induced animal models, probiotics, such as B. longum NCC3001,

can reduce anxiety-like behaviors induced in rats in response to

DSS-induced colitis (Bercik et al., 2011b). The probiotic B. longum

NCC3001 normalizes behavior by decreasing the excitability of

enteric neurons, but does not affect MPO activity, histological

scores, or BDNF levels. In another previously mentioned

behavioral study, Emge et al. found that recognition memory

deficits and anxiety-like behavior during acute inflammation in

murine IBD were improved by the administration of a probiotic

mixture containing L. rhamnosus R0011 and L. helveticus R0052

(Emge et al., 2016). The improvements in behavior after probiotic

administration were broadly correlated with the restoration of the

microbiota and modulated hippocampal c-Fos expression.
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Inflammation may serve as a common trigger for the altered

cognitive function observed in these models. Yoo et al. found that

oral administration of a probiotic mixture containing L. plantarum

NK151, B. longum NK173, and B. bifidum NK175 could also

alleviate stress-induced fatigue, depression, and IBD by

modulating inflammatory cytokines and gut microbiota

byproducts such as LPS (Yoo et al., 2022). A previous study

found that E. coli K1 significantly caused psychiatric disorders,

such as depression and memory impairment, and IBD-like colitis in

SPF and GF mice (Jang et al., 2018). Yun et al. observed that oral

gavage of L. gasseri NK109 significantly alleviated E. coli K1-

induced depression-like behaviors in GF and SPF mice by

regulating the immune response through NF-kB-mediated BDNF

expression, IL-1b expression, and vagus nerve-mediated gut-brain

signaling (Yun et al., 2020). In addition, this group demonstrated

that L. reuteri NK33 and B. adolescentis NK98 synergistically

improved the occurrence and development of anxiety/depression

and colitis by regulating gut immune responses and microbiota

composition (Jang et al., 2019). However, E. faecium and

Pediococcus acidilactici, known as probiotic strains, deteriorated

Enterobacteriaceae-induced depression and colitis in mice (Jang

et al., 2022). Another probiotic strain, Weissella paramesenteroides

WpK4, can reduce anxiety-like and depression-like behaviors in

murine models of ulcerative colitis by regulating the MGB axis and

reducing gut permeability (Sandes et al., 2020). One Chinese group

also observed that L. plantarum DMDL 9010 intake could reduce

colitis and depression-like behavior in mice with DSS-induced

colitis by upregulating the levels of neurotransmitters (especially

5-HT, DA, NE, and 5-HIAA) and SCFAs (such as butyric acid and

propionic acid) (Huang et al., 2022). Considering these encouraging

data from preclinical trials, microbiota modulation with probiotics

might offer a novel therapeutic approach to combat behavioral

comorbidities, such as depression, in patients suffering from IBD.

However, the benefits of these treatments are limited because of the

scarcity of interventional studies. Further well-designed clinical

trials should be conducted to confirm the benefits of these

probiotics in patients with IBD and comorbid depression.
5.3 Metabolic syndrome

Metabolic syndrome is defined as a cluster of obesity,

hypertension, dyslipidemia, and dysglycemia. Over the past few

decades, the prevalence of metabolic syndrome has increased

markedly worldwide, which may be explained by urbanization,

aging, lifestyle changes, and nutritional transition. Metabolic

syndrome has become a serious public health problem,

highlighting the urgent need to tackle metabolic syndrome in

China and other populations (Li et al., 2018). Obesity is defined

as abnormal or excessive fat accumulation that presents a risk to

health and is a well-known cause of cardiovascular disease burden

and premature death. DM is a chronic disease caused by an

inherited or acquired lack of insulin produced by the pancreas or

the inability of the body to fully utilize the insulin produced. A

growing body of evidence suggests that co-morbid metabolic

syndrome and depression are common and are often considered
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“metabolic depression” (Demakakos et al., 2010; Forsythe et al.,

2010). Major depression and the exacerbation of depression

symptoms have been reported in 11% and 31% of patients with

DM, respectively (Semenkovich et al., 2015). The lifetime

prevalence of major depression is approximately 28.5%. It has

been reported that the prevalence of depression in patients with

diabetes is higher than in the normal population (Anderson et al.,

2001). In a meta-analysis of 17 community-based studies with

204,507 participants, there was a significant association between

depression and obesity (De Wit et al., 2010). There is evidence of a

dose-response effect of obesity severity on the odds of depression

(Onyike et al., 2003). Obesity increases the incidence of depression

as a function of metabolic dysfunction (Opel et al., 2015; Delgado

et al., 2018). Depression is linked to a higher rate of complications

in metabolic syndrome, to more disability, and to loss of years of

life. Depression worsens glycemic control and causes greater

severity of DM complications, resulting in poorer adherence to

DM self-care (adherence to diet, checking blood sugar level),

increased risk of retinopathy and macrovascular complications,

decreased QoL, and increased disability burden (De Groot et al.,

2016). Obesity leads to poorer performance in diverse cognitive

tasks, and these deficits are exacerbated in instances of comorbid

depressive disorder (Restivo et al., 2017). Thus, a better

understanding of the link between comorbid depression and

metabolic syndrome is critical to inform appropriate preventive

and intervention strategies. Simultaneous therapeutic option for

depression and metabolic syndrome is merited to enhance

treatment outcomes in both conditions.

The exact mechanisms underlying the association between

depression and metabolic syndrome are poorly understood, and

possible pathophysiological overlap has been proposed. However,

whether there is a causal relationship between both diseases and the

nature of that causal relationship is still unclear. Recent advances

have reported that both depression and these metabolic diseases are

related to chronic low-grade inflammation and gut dysbiosis (Chan

et al., 2019). The gut microbiota plays a vital role in regulating both

the metabolic and brain functions of the host by reducing

inflammatory activation and affecting the regulation of energy

balance and release of neurotransmitters, suggesting that the gut

microbiota can be considered a promising target to treat metabolic

depression. To date, there have been no specific pharmacotherapies

for metabolic depression. Current therapies for both depression and

metabolic syndrome remain suboptimal for many patients, thus

making improvements and advances in intervention options in high

demand. Increasing evidence indicates that probiotics play a

promising role in the management of these comorbidities.

Probiotics appear to be effective in reducing depressive symptoms

and can improve some of the clinical components of metabolic

syndrome, making it a potential new therapeutic option or patient-

specific strategy to treat both metabolic and depressive disorders.

Numerous animal and clinical studies have provided evidence

for the treatment of metabolic depression with different probiotics.

Patterson et al. found that daily administration of GABA-producing

L. brevis DSM32386 and L. brevis DPC6108 ameliorated both

metabolic abnormalities and depression-like behavior associated

with metabolic syndrome in mice (Patterson et al., 2019).
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Specifically, L. brevis attenuated various abnormalities associated

with metabolic dysfunction, causing a reduction in the

accumulation of mesenteric adipose tissue, increased insulin

secretion following glucose challenge, improved plasma

cholesterol clearance, and reduced despair-like behavior and basal

corticosterone production during FST. This exploratory study

suggested that increased microbial GABA production could affect

both host metabolism and behavior. Another study found that A.

muciniphila subtype improves olanzapine-induced glucose

homeostas is in mice by downregulat ing G6Pase and

phosphoenolpyruvate carboxykinase overexpression, attenuating

insulin resistance, and reducing systemic inflammation by

restoring intestinal barrier function (Corb Aron et al., 2021). In

addition, one recent ongoing RCT conducted by Gawlik-Kotelnicka

et al. found that probiotic administration (including L. casei, L.

acidophilus, and B. bifidum) in patients with depression for eight

weeks had beneficial effects on the Beck Depression Inventory score,

insulin, hs-CRP, and glutathione concentrations (Gawlik-

Kotelnicka et al., 2021). They also evaluated the influence of

supplementation with a probiotic mixture including B. longum

Rosell®-175 and L. helveticus Rosell®-52 on depressive

symptoms, QoL, inflammation, oxidative stress indices, and fecal

microbiota in patients with depression, depending on the metabolic

syndrome comorbidity (Gawlik-Kotelnicka et al., 2021). If

successful, the trial will establish an easy-to-use and safe

treatment option (probiotic supplement) as an adjunctive therapy

in patients who are only partially responsive to pharmacological

treatment. In a 2-month clinical trial, treatment with a synbiotic

formula of L. acidophilus PBS066, L. plantarum PBS067, and L.

reuteri PBS072 with active prebiotics could decrease the prevalence

of metabolic syndrome and several cardiovascular risk factors and

markers of insulin resistance in older patients, which improved

their QoL (Cicero et al., 2021). The above-mentioned evidence

suggests that some specific probiotics could be used as adjunctive

treatment options to treat the comorbidity of depression and

metabolic syndrome. Thus, future probiotic intervention studies

in large cohorts of patients with comorbid depression and metabolic

syndrome and more rigorous RCTs are needed to determine

whether probiotics can provide benefits for comorbidity

treatment in clinical practice.
6 Summary

Accumulating evidence has identified that the gut microbiota

actively participates in bidirectional gut-brain communication, which

is considered the “second brain” of the human body. The gut

microbiota has significant impact on the immune system, brain

development, and behavior, and its alterations lead to the onset

and progression of several neuropsychiatric disorders, including

depression. The exact mechanisms by which the gut microbiota

causes or alters depression are not fully understood, although

current evidence demonstrates that the gut microbiota can affect

the development of depression, mainly through the HPA axis, and

inflammation, and modify the level of BDNF. Based on the present

scientific discoveries, the gut microbiota may be a novel therapeutic
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target for the prevention and treatment of depression, with pre-

clinical and clinical studies suggesting that several strains of

probiotics can provide critical benefits for preventing and treating

depression. Due to the lack of direct clinical evidence, it still cannot be

recommended that probiotics can replace antidepressant medications

as the primary treatment for patients with depression. In addition,

depression often coexists with IBS, IBD, and metabolic syndromes,

further increasing the risk of mortality. The pathophysiological

overlap between depression and its comorbidity makes it feasible to

treat these diseases with specific probiotics, which can improve both

depressive symptoms and comorbid abnormalities. However, it is

noteworthy that these benefits are strain-specific, while other

influencing factors, including the type of intervention (add-on

versus standalone), intervention content (strain combinations and

dosing), delivery modes (tablets, capsules, powders, and freeze-dried

formulations), patient population, and disease severity threshold for

inclusion should also be considered. There is an urgent need to

identify safe and effective novel probiotic strains to prevent and treat

depression and its comorbidities. In the future, more rigorous RCTs

in larger samples of patients diagnosed with depression with/

without comorbidity should explore the optimal probiotic

supplement content and dosage, long-term safety, and efficacy,

along with an appropriate follow-up to assess relapse rates.

Probiotic supplementation may serve as a simple and effective

dietary intervention to promote mental well-being among patients

with depression and depressed comorbidities.
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Garcıá-Solache, M., and Rice, L. B. (2019). The enterococcus: A model of adaptability
to its environment. Clin. Microbiol. Rev. 32 (2), e00058–e00018. doi: 10.1128/
cmr.00058-18
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