37 research outputs found

    W-MAE: Pre-trained weather model with masked autoencoder for multi-variable weather forecasting

    Full text link
    Weather forecasting is a long-standing computational challenge with direct societal and economic impacts. This task involves a large amount of continuous data collection and exhibits rich spatiotemporal dependencies over long periods, making it highly suitable for deep learning models. In this paper, we apply pre-training techniques to weather forecasting and propose W-MAE, a Weather model with Masked AutoEncoder pre-training for multi-variable weather forecasting. W-MAE is pre-trained in a self-supervised manner to reconstruct spatial correlations within meteorological variables. On the temporal scale, we fine-tune the pre-trained W-MAE to predict the future states of meteorological variables, thereby modeling the temporal dependencies present in weather data. We pre-train W-MAE using the fifth-generation ECMWF Reanalysis (ERA5) data, with samples selected every six hours and using only two years of data. Under the same training data conditions, we compare W-MAE with FourCastNet, and W-MAE outperforms FourCastNet in precipitation forecasting. In the setting where the training data is far less than that of FourCastNet, our model still performs much better in precipitation prediction (0.80 vs. 0.98). Additionally, experiments show that our model has a stable and significant advantage in short-to-medium-range forecasting (i.e., forecasting time ranges from 6 hours to one week), and the longer the prediction time, the more evident the performance advantage of W-MAE, further proving its robustness

    HECT, UBA and WWE domain containing 1 represses cholesterol efflux during CD4+ T cell activation in Sjögren’s syndrome

    Get PDF
    Introduction: Sjögren’s syndrome (SS) is a chronic autoimmune disorder characterized by exocrine gland dysfunction, leading to loss of salivary function. Histological analysis of salivary glands from SS patients reveals a high infiltration of immune cells, particularly activated CD4+ T cells. Thus, interventions targeting abnormal activation of CD4+ T cells may provide promising therapeutic strategies for SS. Here, we demonstrate that Hect, uba, and wwe domain containing 1 (HUWE1), a member of the eukaryotic Hect E3 ubiquitin ligase family, plays a critical role in CD4+ T-cell activation and SS pathophysiology.Methods: In the context of HUWE1 inhibition, we investigated the impact of the HUWE1 inhibitor BI8626 and sh-Huwe1 on CD4+ T cells in mice, focusing on the assessment of activation levels, proliferation capacity, and cholesterol abundance. Furthermore, we examined the therapeutic potential of BI8626 in NOD/ShiLtj mice and evaluated its efficacy as a treatment strategy.Results: Inhibition of HUWE1 reduces ABCA1 ubiquitination and promotes cholesterol efflux, decreasing intracellular cholesterol and reducing the expression of phosphorylated ZAP-70, CD25, and other activation markers, culminating in the suppressed proliferation of CD4+ T cells. Moreover, pharmacological inhibition of HUWE1 significantly reduces CD4+ T-cell infiltration in the submandibular glands and improves salivary flow rate in NOD/ShiLtj mice.Conclusion: These findings suggest that HUWE1 may regulate CD4+ T-cell activation and SS development by modulating ABCA1-mediated cholesterol efflux and presents a promising target for SS treatment

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Analysis of a T-Frame Bridge

    Get PDF
    The structural behavior of T-frame bridges is particularly complicated and it is difficult using a general analytical method to directly acquire the internal forces in the structure. This paper presents a spatial grillage model for analysis of such bridges. The proposed model is validated by comparison with results obtained from field testing. It is shown that analysis of T-frame bridges may be conveniently performed using the spatial grillage model

    Progress in the Application of Biomimetic Mineralization for Tooth Repair

    No full text
    The tooth, including enamel and dentin, is a prominent biomineral that is produced by the biomineralization of living organisms. Although the mechanical performance of the tooth is outstanding, caries easily develop in a complex oral environment. The analysis of the chemical composition and the relationship between the mechanical properties and the structure is of great importance in solving caries. In this review, the multilevel structure and mechanical properties of enamel and dentin are briefly introduced, along with caries formation and the limitations of clinical dental restoration. Furthermore, the progress of the application of a wide range of biomimetic strategies for tooth remineralization is highlighted, including the use of calcium phosphate ionic clusters to construct the mineralization front, ensuring the oriented epitaxial growth of enamel crystals and replicating the complex structure of the enamel. Moreover, compared with the current clinical treatment, in which the resin composite and glass ionomer cement are the main repair materials and the high incidence of secondary caries leads to imperfect restorations, the remineralization tactics could achieve excellent repair effectiveness in reconstructing the complicated structure, restoring mechanical strength and gaining permanent repair. A basic understanding of enamel and dentin, their potential for restoration, and hopeful prospects for tooth repair that can be applied in the clinical setting, not just in the laboratory, is provided by this review

    Combined Mie Resonance Metasurface for Wideband Terahertz Absorber

    No full text
    In this paper, we propose a combined metasurface consisting of an aluminum substrate and an array of TiO2 blocks to achieve a wideband terahertz absorber. We incorporated several similar dielectric blocks with different side length into each unit cell. Each dielectric block could cause magnetic-resonance-inducing absorption effect with different peak wavelengths. Thus, our combined metasurface could achieve wider absorption frequency band than the traditional design when these dielectric blocks were properly designed. The absorption bandwidth could be widened nearly 2.5 times and 5 times compared to a single block case when there were four and nine blocks, respectively, andcouldbe further improved by increasing the number of combinations in structures (variable parameters included number, spacing, dimensions etc.). For both TE00 (the electric fields of the light polarized along the y-axis) and TM00 (the electric fields of the light polarized along the x-axis) polarization states, the absorption bandwidth could be widened effectively; even when the incident angle was 45°, the absorption rate could still reach about 75%. This structure is simple and easy to fabricate, and this design concept can also be used in various other application fields

    Synergistic Effect of Pressurization Rate and β-Form Nucleating Agent on the Multi-Phase Crystallization of iPP

    No full text
    Using a homemade pressure device, we explored the synergistic effect of pressurization rate and β-form nucleating agent (β-NA) on the crystallization of an isotactic polypropylene (iPP) melt. The obtained samples were characterized by combining small angle X-ray scattering and synchrotron wide angle X-ray diffraction. It was found that the synergistic application of pressurization and β-NA enables the preparation of a unique multi-phase crystallization of iPP, including β-, γ- and/or mesomorphic phases. Pressurization rate plays a crucial role on the formation of different crystal phases. As the pressurization rate increases in a narrow range between 0.6–1.9 MPa/s, a significant competitive formation between β- and γ-iPP was detected, and their relative crystallinity are likely to be determined by the growth of the crystal. When the pressurization rate increases further, both β- and γ-iPP contents gradually decrease, and the mesophase begins to emerge once it exceeds 15.0 MPa/s, then mesomorphic, β- and γ- iPP coexist with each other. Moreover, with different β-NA contents, the best pressurization rate for β-iPP growth is the same as 1.9 MPa/s, while more β-NA just promotes the content of β-iPP under the rates lower than 1.9 MPa/s. In addition to inducing the formation of β-iPP, it shows that β-NA can also significantly promote the formation of γ-iPP in a wide pressurization rate range between 3.8 to 75 MPa/s. These results were elucidated by combining classical nucleation theory and the growth theory of different crystalline phases, and a theoretical model of the pressurization-induced crystallization is established, providing insight into understanding the multi-phase structure development of iPP

    Simulation of Jetting in Injection Molding Using a Finite Volume Method

    No full text
    In order to predict the jetting and the subsequent buckling flow more accurately, a three dimensional melt flow model was established on a viscous, incompressible, and non-isothermal fluid, and a control volume-based finite volume method was employed to discretize the governing equations. A two-fold iterative method was proposed to decouple the dependence among pressure, velocity, and temperature so as to reduce the computation and improve the numerical stability. Based on the proposed theoretical model and numerical method, a program code was developed to simulate melt front progress and flow fields. The numerical simulations for different injection speeds, melt temperatures, and gate locations were carried out to explore the jetting mechanism. The results indicate the filling pattern depends on the competition between inertial and viscous forces. When inertial force exceeds the viscous force jetting occurs, then it changes to a buckling flow as the viscous force competes over the inertial force. Once the melt contacts with the mold wall, the melt filling switches to conventional sequential filling mode. Numerical results also indicate jetting length increases with injection speed but changes little with melt temperature. The reasonable agreements between simulated and experimental jetting length and buckling frequency imply the proposed method is valid for jetting simulation

    The Protective Effect of Theaflavins on the Kidney of Mice with Type II Diabetes Mellitus

    No full text
    Diabetic nephropathy, primarily caused by advanced glycation end products (AGEs), is a serious complication resulting from type 2 diabetes mellitus (T2DM). Reportedly, theaflavins (TFs) can improve diabetic nephropathy; however, the underlying molecular mechanism is not fully clear. In this study, T2DM mice were treated with different concentrations of TFs by gavage for 10 weeks to investigate the effect of TFs on diabetic nephropathy and their potential molecular mechanism of action. Biochemical and pathological analysis showed that the TFs effectively improved blood glucose, insulin resistance, kidney function, and other symptoms in diabetic mice. The mechanism studies indicated that TFs inhibited the formation of AGEs, thereby inhibiting the activation of the MAPK/NF-κB signaling pathway. Therefore, our study suggested that TFs improved diabetic nephropathy by inhibiting the formation of AGEs
    corecore