11 research outputs found

    Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures

    No full text
    The present study describes a unique way of integrating substrateless electrospinning process with textile technology. We developed a new collector design that provided a pressure-driven, localized cotton-wool structure in free space from which continuous high strength yarns were drawn. An advantage of this integration was that the textile could be drug/dye loaded and be developed into a core–sheath architecture with greater functionality. This method could produce potential nanotextiles for various biomedical applications

    Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures

    No full text
    The present study describes a unique way of integrating substrateless electrospinning process with textile technology. We developed a new collector design that provided a pressure-driven, localized cotton-wool structure in free space from which continuous high strength yarns were drawn. An advantage of this integration was that the textile could be drug/dye loaded and be developed into a core–sheath architecture with greater functionality. This method could produce potential nanotextiles for various biomedical applications

    Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia

    No full text
    This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au­(III)­(diethylenetriamine)­Cl]­Cl<sub>2</sub>, which generates heat upon RF exposure, was conjugated to carboxyl-functional poly­(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δ<i>T</i>) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer

    Sustainable Chemical Synthesis for Phosphorus-Doping of TiO<sub>2</sub> Nanoparticles by Upcycling Human Urine and Impact of Doping on Energy Applications

    No full text
    Recently, there has been significant research interest toward sustainable chemical synthesis and processing of nanomaterials. Human urine, a pollutant, requires energy intensive processing steps prior to releasing into rivers and oceans. Upcyling urine has been proposed and practiced as a sustainable process in the past. Doping is one of the foremost processes to elevate the functionality of nanomaterials depending on the applications it is sought for. Phosphorus doping in to TiO<sub>2</sub> nanomaterials has been of research interest over a decade now, that has been chiefly done using acidic precursors. Here we demonstrate, upcycling urine, a sustainable process for phosphorus doping into TiO<sub>2</sub> lattice. Upon doping the changes in morphology, surface chemistry and band gap is studied in detail and compared with undoped TiO<sub>2</sub> that is prepared using deionized water instead of urine. X-ray photoelectron spectroscopy confirmed that the P was replacing Ti in the lattice and exists in P<sup>5+</sup> state with a quantified concentration of 2.5–3 at %. P-doped nanoparticles were almost 50% smaller in size with a lower concentration of surface −OH groups and a band gap increase of 0.3 eV. Finally, impact of these changes on energy devices such as dye-sensitized solar cells and li-ion batteries has been investigated. It is confirmed that P-doping induced surface chemical and band gap changes in TiO<sub>2</sub> affected the solar cell characteristics negatively, while the smaller particle size and possibly wider surface channels improved Li-ion battery performance

    Green Synthesis of Anisotropic Gold Nanoparticles for Photothermal Therapy of Cancer

    No full text
    Nanoparticles of varying composition, size, shape, and architecture have been explored for use as photothermal agents in the field of cancer nanomedicine. Among them, gold nanoparticles provide a simple platform for thermal ablation owing to its biocompatibility in vivo. However, the synthesis of such gold nanoparticles exhibiting suitable properties for photothermal activity involves cumbersome routes using toxic chemicals as capping agents, which can cause concerns in vivo. Herein, gold nanoparticles, synthesized using green chemistry routes possessing near-infrared (NIR) absorbance facilitating photothermal therapy, would be a viable alternative. In this study, anisotropic gold nanoparticles were synthesized using an aqueous route with cocoa extract which served both as a reducing and stabilizing agent. The as-prepared gold nanoparticles were subjected to density gradient centrifugation to maximize its NIR absorption in the wavelength range of 800–1000 nm. The particles also showed good biocompatibility when tested in vitro using A431, MDA-MB231, L929, and NIH-3T3 cell lines up to concentrations of 200 μg/mL. Cell death induced in epidermoid carcinoma A431 cells upon irradiation with a femtosecond laser at 800 nm at a low power density of 6 W/cm<sup>2</sup> proved the suitability of green synthesized NIR absorbing anisotropic gold nanoparticles for photothermal ablation of cancer cells. These gold nanoparticles also showed good X-ray contrast when tested using computed tomography (CT), proving their feasibility for use as a contrast agent as well. This is the first report on green synthesized anisotropic and cytocompatible gold nanoparticles without any capping agents and their suitability for photothermal therapy

    Bioinspired Composite Matrix Containing Hydroxyapatite–Silica Core–Shell Nanorods for Bone Tissue Engineering

    No full text
    Development of multifunctional bioinspired scaffolds that can stimulate vascularization and regeneration is necessary for the application in bone tissue engineering. Herein, we report a composite matrix containing hydroxyapatite (HA)–silica core–shell nanorods with good biocompatibility, osteogenic differentiation, vascularization, and bone regeneration potential. The biomaterial consists of a crystalline, rod-shaped nanoHA core with uniform amorphous silica sheath (Si–nHA) that retains the characteristic phases of the individual components, confirmed by high-resolution transmission electron microscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The nanorods were blended with gelatinous matrix to develop as a porous, composite scaffold. The viability and functionality of osteogenically induced mesenchymal stem cells as well as endothelial cells have been significantly improved through the incorporation of Si–nHA within the matrix. Studies in the chicken chorioallantoic membrane and rat models demonstrated that the silica-containing scaffolds not only exhibit good biocompatibility, but also enhance vascularization in comparison to the matrix devoid of silica. Finally, when tested in a critical-sized femoral segmental defect in rats, the nanocomposite scaffolds enhanced new bone formation in par with the biomaterial degradation. In conclusion, the newly developed composite biomimetic scaffold may perform as a promising candidate for bone tissue engineering applications

    Injectable Shear-Thinning CaSO<sub>4</sub>/FGF-18-Incorporated Chitin–PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model

    No full text
    For craniofacial bone regeneration, shear-thinning injectable hydrogels are favored over conventional scaffolds because of their improved defect margin adaptability, easier handling, and ability to be injected manually into deeper tissues. The most accepted method, after autografting, is the use of recombinant human bone morphogenetic protein-2 (BMP-2); however, complications such as interindividual variations, edema, and poor cost-efficiency in supraphysiological doses have been reported. The endogenous synthesis of BMP-2 is desirable, and a molecule which induces this is fibroblast growth factor-18 (FGF-18) because it can upregulate the BMP-2 expression  by supressing noggin. We developed a chitin–poly­(lactide-<i>co</i>-glycolide) (PLGA) composite hydrogel by regeneration chemistry and then incorporated CaSO<sub>4</sub> and FGF-18 for this purpose. Rheologically, a 7-fold increase in the elastic modulus was observed in the CaSO<sub>4</sub>-incorporated chitin–PLGA hydrogels as compared to the chitin–PLGA hydrogel. Shear-thinning Herschel–Bulkley fluid nature was observed for both hydrogels. Chitin–PLGA/CaSO<sub>4</sub> gel showed sustained release of FGF-18. In vitro osteogenic differentiation showed an enhanced alkaline phosphatase (ALP) expression in the FGF-18-containing chitin–PLGA/CaSO<sub>4</sub> gel when compared to cells alone. Further, it was confirmed by studying the expression of osteogenic genes [RUNX2, ALP, BMP-2, osteocalcin (OCN), and osteopontin (OPN)], immunofluorescence staining of BMP-2, OCN, and OPN, and alizarin red S staining. Incorporation of FGF-18 in the hydrogel increased the endothelial cell migration. Further, the regeneration potential of the prepared hydrogels was tested in vivo, and longitudinal live animal μ-CT was performed. FGF-18-loaded chitin–PLGA/CaSO<sub>4</sub> showed early and almost complete bone healing in comparison with chitin–PLGA/CaSO<sub>4</sub>, chitin–PLGA/FGF-18, chitin–PLGA, and sham control systems, as confirmed by hematoxylin and eosin and osteoid tetrachrome stainings. This shows that the CaSO<sub>4</sub> and FGF-18-incorporated hydrogel is a potential candidate for craniofacial bone defect regeneration

    Transforming Nanofibers into Woven Nanotextiles for Vascular Application

    No full text
    This study investigates the unique properties, fabrication technique, and vascular applications of woven nanotextiles made from low-strength nanoyarns, which are bundles of thousands of nanofibers. An innovative robotic system was developed to meticulously interweave nanoyarns in longitudinal and transverse directions, resulting in a flexible, but strong woven product. This is the only technique for producing seamless nanotextiles in tubular form from nanofibers. The porosity and the mechanical properties of nanotextiles could be substantially tuned by altering the number of nanoyarns per unit area. Investigations of the physical and biological properties of the woven nanotextile revealed remarkable and fundamental differences from its nonwoven nanofibrous form and conventional textiles. This enhancement in the material property was attributed to the multitude of hierarchically arranged nanofibers in the woven nanotextiles. This patterned woven nanotextile architecture leads to a superhydrophilic behavior in an otherwise hydrophobic material, which in turn contributed to enhanced protein adsorption and consequent cell attachment and spreading. Short-term in vivo testing was performed, which proved that the nanotextile conduit was robust, suturable, kink proof, and nonthrombogenic and could act as an efficient embolizer when deployed into an artery

    Transforming Nanofibers into Woven Nanotextiles for Vascular Application

    No full text
    This study investigates the unique properties, fabrication technique, and vascular applications of woven nanotextiles made from low-strength nanoyarns, which are bundles of thousands of nanofibers. An innovative robotic system was developed to meticulously interweave nanoyarns in longitudinal and transverse directions, resulting in a flexible, but strong woven product. This is the only technique for producing seamless nanotextiles in tubular form from nanofibers. The porosity and the mechanical properties of nanotextiles could be substantially tuned by altering the number of nanoyarns per unit area. Investigations of the physical and biological properties of the woven nanotextile revealed remarkable and fundamental differences from its nonwoven nanofibrous form and conventional textiles. This enhancement in the material property was attributed to the multitude of hierarchically arranged nanofibers in the woven nanotextiles. This patterned woven nanotextile architecture leads to a superhydrophilic behavior in an otherwise hydrophobic material, which in turn contributed to enhanced protein adsorption and consequent cell attachment and spreading. Short-term in vivo testing was performed, which proved that the nanotextile conduit was robust, suturable, kink proof, and nonthrombogenic and could act as an efficient embolizer when deployed into an artery

    Transforming Nanofibers into Woven Nanotextiles for Vascular Application

    No full text
    This study investigates the unique properties, fabrication technique, and vascular applications of woven nanotextiles made from low-strength nanoyarns, which are bundles of thousands of nanofibers. An innovative robotic system was developed to meticulously interweave nanoyarns in longitudinal and transverse directions, resulting in a flexible, but strong woven product. This is the only technique for producing seamless nanotextiles in tubular form from nanofibers. The porosity and the mechanical properties of nanotextiles could be substantially tuned by altering the number of nanoyarns per unit area. Investigations of the physical and biological properties of the woven nanotextile revealed remarkable and fundamental differences from its nonwoven nanofibrous form and conventional textiles. This enhancement in the material property was attributed to the multitude of hierarchically arranged nanofibers in the woven nanotextiles. This patterned woven nanotextile architecture leads to a superhydrophilic behavior in an otherwise hydrophobic material, which in turn contributed to enhanced protein adsorption and consequent cell attachment and spreading. Short-term in vivo testing was performed, which proved that the nanotextile conduit was robust, suturable, kink proof, and nonthrombogenic and could act as an efficient embolizer when deployed into an artery
    corecore