12 research outputs found

    Disaster impacts on cost and utilization of Medicare

    Get PDF
    Abstract Background To estimate changes in the cost and utilization of Medicare among beneficiaries over age 65 who have been impacted by a natural disaster, we merged publically available county-level Medicare claims for the years 2008–2012 with Federal Emergency Management Agency (FEMA) data related to disasters in each U.S. County from 2007 to 2012. Methods Fixed-effects generalized linear models were used to calculate change in per capita costs standardized by region and utilization per 1000 beneficiaries at the county level. Aggregate county demographic characteristics of Medicare participants were included as predictors of change in county-level utilization and cost. FEMA data was used to determine counties that experienced no, some, high, and extreme hazard exposure. FEMA data was merged with claims data to create a balanced panel dataset from 2008 to 2012. Results In general, both cost and utilization of Medicare services were higher in counties with more hazard exposure. However, utilization of home health services was lower in counties with more hazard exposure. Conclusions Additional research using individual-level data is needed to address limitations and determine the impacts of the substitution of services (e.g., inpatient rehabilitation for home health) that may be occurring in disaster affected areas during the post-disaster period

    County-level hurricane exposure and birth rates: application of difference-in-differences analysis for confounding control

    Get PDF
    Abstract Background Epidemiological analyses of aggregated data are often used to evaluate theoretical health effects of natural disasters. Such analyses are susceptible to confounding by unmeasured differences between the exposed and unexposed populations. To demonstrate the difference-in-difference method our population included all recorded Florida live births that reached 20 weeks gestation and conceived after the first hurricane of 2004 or in 2003 (when no hurricanes made landfall). Hurricane exposure was categorized using ≥74 mile per hour hurricane wind speed as well as a 60 km spatial buffer based on weather data from the National Oceanic and Atmospheric Administration. The effect of exposure was quantified as live birth rate differences and 95 % confidence intervals [RD (95 % CI)]. To illustrate sensitivity of the results, the difference-in-differences estimates were compared to general linear models adjusted for census-level covariates. This analysis demonstrates difference-in-differences as a method to control for time-invariant confounders investigating hurricane exposure on live birth rates. Results Difference-in-differences analysis yielded consistently null associations across exposure metrics and hurricanes for the post hurricane rate difference between exposed and unexposed areas (e.g., Hurricane Ivan for 60 km spatial buffer [−0.02 births/1000 individuals (−0.51, 0.47)]. In contrast, general linear models suggested a positive association between hurricane exposure and birth rate [Hurricane Ivan for 60 km spatial buffer (2.80 births/1000 individuals (1.94, 3.67)] but not all models. Conclusions Ecological studies of associations between environmental exposures and health are susceptible to confounding due to unmeasured population attributes. Here we demonstrate an accessible method of control for time-invariant confounders for future research

    The associations between environmental quality and preterm birth in the United States, 2000–2005: a cross-sectional analysis

    Get PDF
    Abstract Background Many environmental factors have been independently associated with preterm birth (PTB). However, exposure is not isolated to a single environmental factor, but rather to many positive and negative factors that co-occur. The environmental quality index (EQI), a measure of cumulative environmental exposure across all US counties from 2000—2005, was used to investigate associations between ambient environment and PTB. Methods With 2000–2005 birth data from the National Center for Health Statistics for the United States (n = 24,483,348), we estimated the association between increasing quintiles of the EQI and county-level and individual-level PTB; we also considered environmental domain-specific (air, water, land, sociodemographic and built environment) and urban–rural stratifications. Results Effect estimates for the relationship between environmental quality and PTB varied by domain and by urban–rural strata but were consistent across county- and individual-level analyses. The county-level prevalence difference (PD (95 % confidence interval) for the non-stratified EQI comparing the highest quintile (poorest environmental quality) to the lowest quintile (best environmental quality) was −0.0166 (−0.0198, −0.0134). The air and sociodemographic domains had the strongest associations with PTB; PDs were 0.0196 (0.0162, 0.0229) and −0.0262 (−0.0300, −0.0224) for the air and sociodemographic domain indices, respectively. Within the most urban strata, the PD for the sociodemographic domain index was 0.0256 (0.0205, 0.0307). Odds ratios (OR) for the individual-level analysis were congruent with PDs. Conclusion We observed both strong positive and negative associations between measures of broad environmental quality and preterm birth. Associations differed by rural–urban stratum and by the five environmental domains. Our study demonstrates the use of a large scale composite environment exposure metric with preterm birth, an important indicator of population health and shows potential for future research

    A novel approach for measuring residential socioeconomic factors associated with cardiovascular and metabolic health

    Get PDF
    Individual-level characteristics, including socioeconomic status, have been associated with poor metabolic and cardiovascular health; however, residential area-level characteristics may also independently contribute to health status. In the current study, we used hierarchical clustering to aggregate 444 US Census block groups in Durham, Orange, and Wake Counties, NC, USA into six homogeneous clusters of similar characteristics based on 12 demographic factors. We assigned 2254 cardiac catheterization patients to these clusters based on residence at first catheterization. After controlling for individual age, sex, smoking status, and race, there were elevated odds of patients being obese (odds ratio (OR) = 1.92, 95% confidence intervals (CI) = 1.39, 2.67), and having diabetes (OR = 2.19, 95% CI = 1.57, 3.04), congestive heart failure (OR = 1.99, 95% CI = 1.39, 2.83), and hypertension (OR = 2.05, 95% CI = 1.38, 3.11) in a cluster that was urban, impoverished, and unemployed, compared with a cluster that was urban with a low percentage of people that were impoverished or unemployed. Our findings demonstrate the feasibility of applying hierarchical clustering to an assessment of area-level characteristics and that living in impoverished, urban residential clusters may have an adverse impact on health

    The Association Between Physical Inactivity and Obesity is Modified by Five Domains of Environmental Quality in U.S. Adults: A Cross-Sectional Study

    Get PDF
    Physical inactivity is a primary contributor to the obesity epidemic, but may be promoted or hindered by environmental factors. To examine how cumulative environmental quality may modify the inactivity-obesity relationship, we conducted a cross-sectional study by linking county-level Behavioral Risk Factor Surveillance System data with the Environmental Quality Index (EQI), a composite measure of five environmental domains (air, water, land, built, sociodemographic) across all U.S. counties. We estimated the county-level association (N = 3,137 counties) between 2009 age-adjusted leisure-time physical inactivity (LTPIA) and 2010 age-adjusted obesity from BRFSS across EQI tertiles using multi-level linear regression, with a random intercept for state, adjusted for percent minority and rural-urban status. We modelled overall and sex-specific estimates, reporting prevalence differences (PD) and 95% confidence intervals (CI). In the overall population, the PD increased from best (PD = 0.341 (95% CI: 0.287, 0.396)) to worst (PD = 0.645 (95% CI: 0.599, 0.690)) EQI tertile. We observed similar trends in males from best (PD = 0.244 (95% CI: 0.194, 0.294)) to worst (PD = 0.601 (95% CI: 0.556, 0.647)) quality environments, and in females from best (PD = 0.446 (95% CI: 0.385, 0.507)) to worst (PD = 0.655 (95% CI: 0.607, 0.703)). We found that poor environmental quality exacerbates the LTPIA-obesity relationship. Efforts to improve obesity through LTPIA may benefit from considering this relationship

    The Associations between Environmental Quality and Mortality in the Contiguous United States, 2000-2005

    Get PDF
    Background: Assessing cumulative effects of the multiple environmental factors influencing mortality remains a challenging task. Objectives: This study aimed to examine the associations between cumulative environmental quality and all-cause and leading cause-specific (heart disease, cancer, and stroke) mortality rates. Methods: We used the overall Environmental Quality Index (EQI) and its five domain indices (air, water, land, built and sociodemographic) to represent environmental exposure. Associations between the EQI and mortality rates (CDC WONDER) for counties in the contiguous United States (n=3109) were investigated using multiple linear regression models, and random intercept, random slope hierarchical models. Urbanicity, climate and their combination were used to explore the spatial patterns in the associations. Results: We found one standard deviation increase in the overall EQI (worse environment) was associated with a mean 3.22% (95% CI: 2.80%, 3.64%) increase in all-cause mortality, a 0.54% (-0.17%, 1.25%) increase in heart disease mortality, a 2.71% (2.21%, 3.22%) increase in cancer mortality, and a 2.25% (1.11%, 3.39%) increase in stroke mortality. Among environmental domains, the associations ranged from -1.27% (-1.70%,-0.84%) to 3.37% (2.90%, 3.84%) for all-cause mortality, -2.62% (-3.52%, -1.73%) to 4.50% (3.73,5.27%) for heart disease mortality, -0.88% (2.12%,0.36%) to 3.72% (2.38%, to 5.06%) for stroke mortality, and -0.68% (-1.19%, -0.18%) to 3.01% (2.46%, 3.56%) for cancer mortality. Air had the largest associations with all-cause, heart disease, and cancer mortality, while the sociodemographic index had the largest association with stroke mortality. Across the urbanicity gradient, no consistent trend was found. Across climate regions, the associations ranged from 2.29% (1.87%, 2.72%) to 5.30% (4.30%, 6.30%) for overall EQI and higher associations were generally found in dry area for both overall EQI and domain indices. Conclusions: These results suggest that poor environmental quality, particularly air quality, was associated with increased mortality, and that associations vary by urbanicity and climate regions

    The association between physical inactivity and obesity is modified by five domains of environmental quality in U.S. adults: A cross-sectional study.

    Get PDF
    Physical inactivity is a primary contributor to the obesity epidemic, but may be promoted or hindered by environmental factors. To examine how cumulative environmental quality may modify the inactivity-obesity relationship, we conducted a cross-sectional study by linking county-level Behavioral Risk Factor Surveillance System data with the Environmental Quality Index (EQI), a composite measure of five environmental domains (air, water, land, built, sociodemographic) across all U.S. counties. We estimated the county-level association (N = 3,137 counties) between 2009 age-adjusted leisure-time physical inactivity (LTPIA) and 2010 age-adjusted obesity from BRFSS across EQI tertiles using multi-level linear regression, with a random intercept for state, adjusted for percent minority and rural-urban status. We modelled overall and sex-specific estimates, reporting prevalence differences (PD) and 95% confidence intervals (CI). In the overall population, the PD increased from best (PD = 0.341 (95% CI: 0.287, 0.396)) to worst (PD = 0.645 (95% CI: 0.599, 0.690)) EQI tertile. We observed similar trends in males from best (PD = 0.244 (95% CI: 0.194, 0.294)) to worst (PD = 0.601 (95% CI: 0.556, 0.647)) quality environments, and in females from best (PD = 0.446 (95% CI: 0.385, 0.507)) to worst (PD = 0.655 (95% CI: 0.607, 0.703)). We found that poor environmental quality exacerbates the LTPIA-obesity relationship. Efforts to improve obesity through LTPIA may benefit from considering this relationship
    corecore