2,008 research outputs found

    A strong converse for classical channel coding using entangled inputs

    Full text link
    A fully general strong converse for channel coding states that when the rate of sending classical information exceeds the capacity of a quantum channel, the probability of correctly decoding goes to zero exponentially in the number of channel uses, even when we allow code states which are entangled across several uses of the channel. Such a statement was previously only known for classical channels and the quantum identity channel. By relating the problem to the additivity of minimum output entropies, we show that a strong converse holds for a large class of channels, including all unital qubit channels, the d-dimensional depolarizing channel and the Werner-Holevo channel. This further justifies the interpretation of the classical capacity as a sharp threshold for information-transmission.Comment: 9 pages, revte

    The classical capacity of quantum thermal noise channels to within 1.45 bits

    Full text link
    We find a tight upper bound for the classical capacity of quantum thermal noise channels that is within 1/ln21/\ln 2 bits of Holevo's lower bound. This lower bound is achievable using unentangled, classical signal states, namely displaced coherent states. Thus, we find that while quantum tricks might offer benefits, when it comes to classical communication they can only help a bit.Comment: Two pages plus a bi

    Association between genotypic diversity and biofilm production in group B Streptococcus

    Get PDF
    Background: Group B Streptococcus (GBS) is a leading cause of sepsis and meningitis and an important factor in premature and stillbirths. Biofilm production has been suggested to be important for GBS pathogenesis alongside many other elements, including phylogenetic lineage and virulence factors, such as pili and capsule type. A complete understanding of the confluence of these components, however, is lacking. To identify associations between biofilm phenotype, pilus profile and lineage, 293 strains from asymptomatic carriers, invasive disease cases, and bovine mastitis cases, were assessed for biofilm production using an in vitro assay. Results: Multilocus sequence type (ST) profile, pilus island profile, and isolate source were associated with biofilm production. Strains from invasive disease cases and/or belonging to the ST-17 and ST-19 lineages were significantly more likely to form weak biofilms, whereas strains producing strong biofilms were recovered more frequently from individuals with asymptomatic colonization. Conclusions: These data suggest that biofilm production is a lineage-specific trait in GBS and may promote colonization of strains representing lineages other than STs 17 and 19. The findings herein also demonstrate that biofilms must be considered in the treatment of pregnant women, particularly for women with heavy GBS colonization

    Quantum Entanglement of Moving Bodies

    Full text link
    We study the properties of quantum information and quantum entanglement in moving frames. We show that the entanglement between the spins and the momenta of two particles can be interchanged under a Lorentz transformation, so that a pair of particles that is entangled in spin but not momentum in one reference frame, may, in another frame, be entangled in momentum at the expense of spin-entanglement. Similarly, entanglement between momenta may be transferred to spin under a Lorentz transformation. While spin and momentum entanglement each is not Lorentz invariant, the joint entanglement of the wave function is.Comment: 4 pages, 2 figures. An error was corrected in the numerical data and hence the discussion of the data was changed. Also, references were added. Another example was added to the pape

    Nindestructive Evaluation of Metal Matrix Composite Products with Implanted Defects

    Get PDF
    The Westinghouse Science and Technology Center has undertaken a program to develop nondestructive evaluation (NDE) techniques for characterizing the internal structure of SiC particle-reinforced aluminum matrix composites at critical stages during fabrication [1–5]. Because of the large number of processing variables in the manufacture of metal matrix composites (MMC), the likelihood of having detrimental discontinuities is high. The detection of potential defects early in the processing cycle would increase the overall system yield, lower costs, and enhance final product quality [4]. The aim of this investigation was to develop and conduct NDE at various stages of MMC fabrication, correlate the results with microstructural characterization, and establish qualified product quality assurance processes. A large-scale billet was fabricated specially using powder metallurgy techniques to facilitate this objective. The billet contained implanted silicon-carbide particle and aluminum powder clusters as inspection targets. The billet was subsequently extruded into a primary cylindrical extrusion, and finally into a flat plate. The NDE objectives included evaluating the detectability and mapping the implanted defects through each of the processing steps. Comprehensive evaluation of MMC structures requires the use of multiple NDE techniques, including ultrasonic, eddy current, and radiographic testing. This paper concentrates on the results of the ultrasonic investigations. Our experimental approach was: (1) fabricate a MMC billet with intentionally placed inhomogeneities; (2) develop and implement NDE techniques to characterize the MMC internal structure; (3) extend the NDE techniques to intermediate processing and final product forms; and (4) correlate the NDE data with microstructural characterization and mechanical testing results

    On Information Theory, Spectral Geometry and Quantum Gravity

    Full text link
    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.Comment: 4 page

    Hospital-Based Physicians\u27 Intubation Decisions and Associated Mental Models when Managing a Critically and Terminally Ill Older Patient.

    Get PDF
    BACKGROUND: Variation in the intensity of acute care treatment at the end of life is influenced more strongly by hospital and provider characteristics than patient preferences. OBJECTIVE: We sought to describe physicians\u27 mental models (i.e., thought processes) when encountering a simulated critically and terminally ill older patient, and to compare those models based on whether their treatment plan was patient preference-concordant or preference-discordant. METHODS: Seventy-three hospital-based physicians from 3 academic medical centers engaged in a simulated patient encounter and completed a mental model interview while watching the video recording of their encounter. We used an expert model to code the interviews. We then used Kruskal-Wallis tests to compare the weighted mental model themes of physicians who provided preference-concordant treatment with those who provided preference-discordant treatment. RESULTS: Sixty-six (90%) physicians provided preference-concordant treatment and 7 (10%) provided preference-discordant treatment (i.e., they intubated the patient). Physicians who intubated the patient were more likely to emphasize the reversible and emergent nature of the patient situation (z = -2.111, P = 0.035), their own comfort (z = -2.764, P = 0.006), and rarely focused on explicit patient preferences (z = 2.380, P = 0.017). LIMITATIONS: Post-decisional interviewing with audio/video prompting may induce hindsight bias. The expert model has not yet been validated and may not be exhaustive. The small sample size limits generalizability and power. CONCLUSIONS: Hospital-based physicians providing preference-discordant used a different mental model for decision making for a critically and terminally ill simulated case. These differences may offer targets for future interventions to promote preference-concordant care for seriously ill patients

    A Second-Site Noncomplementation Screen for Modifiers of Rho1 Signaling during Imaginal Disc Morphogenesis in Drosophila

    Get PDF
    Rho1 is a small GTPase of the Ras superfamily that serves as the central component in a highly conserved signaling pathway that regulates tissue morphogenesis during development in all animals. Since there is tremendous diversity in the upstream signals that can activate Rho1 as well as the effector molecules that carry out its functions, it is important to define relevant Rho1-interacting genes for each morphogenetic event regulated by this signaling pathway. Previous work from our lab and others has shown that Rho signaling is necessary for the morphogenesis of leg imaginal discs during metamorphosis in Drosophila, although a comprehensive identification of Rho1-interacting genes has not been attempted for this process.We characterized an amorphic allele of Rho1 that displays a poorly penetrant dominant malformed leg phenotype and is capable of being strongly enhanced by Rho1-interacting heterozygous mutations. We then used this allele in a second-site noncomplementation screen with the Exelixis collection of molecularly defined deficiencies to identify Rho1-interacting genes necessary for leg morphogenesis. In a primary screen of 461 deficiencies collectively uncovering approximately 50% of the Drosophila genome, we identified twelve intervals harboring Rho1-interacting genes. Through secondary screening we identified six Rho1-interacting genes including three that were previously identified (RhoGEF2, broad, and stubbloid), thereby validating the screen. In addition, we identified Cdc42, Rheb and Sc2 as novel Rho1-interacting genes involved in adult leg development.This screen identified well-known and novel Rho1-interacting genes necessary for leg morphogenesis, thereby increasing our knowledge of this important signaling pathway. We additionally found that Rheb may have a unique function in leg morphogenesis that is independent of its regulation of Tor

    Peroxisome proliferator-activated receptor delta limits the expansion of pathogenic Th cells during central nervous system autoimmunity.

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs; PPAR-alpha, PPAR-delta, and PPAR-gamma) comprise a family of nuclear receptors that sense fatty acid levels and translate this information into altered gene transcription. Previously, it was reported that treatment of mice with a synthetic ligand activator of PPAR-delta, GW0742, ameliorates experimental autoimmune encephalomyelitis (EAE), indicating a possible role for this nuclear receptor in the control of central nervous system (CNS) autoimmune inflammation. We show that mice deficient in PPAR-delta (PPAR-delta(-/-)) develop a severe inflammatory response during EAE characterized by a striking accumulation of IFN-gamma(+)IL-17A(-) and IFN-gamma(+)IL-17A(+) CD4(+) cells in the spinal cord. The preferential expansion of these T helper subsets in the CNS of PPAR-delta(-/-) mice occurred as a result of a constellation of immune system aberrations that included higher CD4(+) cell proliferation, cytokine production, and T-bet expression and enhanced expression of IL-12 family cytokines by myeloid cells. We also show that the effect of PPAR-delta in inhibiting the production of IFN-gamma and IL-12 family cytokines is ligand dependent and is observed in both mouse and human immune cells. Collectively, these findings suggest that PPAR-delta serves as an important molecular brake for the control of autoimmune inflammation

    Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants

    Get PDF
    Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding of the causes of compositional and spatial variation in responses to warming. Such experiments are useful for determining if geographically separated populations and co-occurring species respond differently to warming, and they provide the opportunity to compare effects of warming on fitness (survivorship and reproduction). We exposed colonies of two common ant species in the eastern United States, Aphaenogaster rudis and Temnothorax curvispinosus, collected along a latitudinal gradient from Massachusetts to North Carolina, to growth chamber treatments that simulated current and projected temperatures in central Massachusetts and central North Carolina within the next century. Regardless of source location, colonies of A. rudis, a keystone seed disperser, experienced high mortality and low brood production in the warmest temperature treatment. Colonies of T. curvispinosus from cooler locations experienced increased mortality in the warmest rearing temperatures, but colonies from the warmest locales did not. Our results suggest that populations of some common species may exhibit uniform declines in response to warming across their geographic ranges, whereas other species will respond differently to warming in different parts of their geographic ranges. Our results suggest that differential responses of populations and species must be incorporated into projections of range shifts in a changing climate.©2012 The Authors. Ecology and Evolution published by Blackwell Publishing Ltd
    corecore