22,599 research outputs found

    Entanglement and optimal strings of qubits for memory channels

    Get PDF
    We investigate the problem of enhancement of mutual information by encoding classical data into entangled input states of arbitrary length and show that while there is a threshold memory or correlation parameter beyond which entangled states outperform the separable states, resulting in a higher mutual information, this memory threshold increases toward unity as the length of the string increases. These observations imply that encoding classical data into entangled states may not enhance the classical capacity of quantum channels.Comment: 14 pages, 8 figures, latex, accepted for publication in Physical Review

    Information Content of Polarization Measurements

    Full text link
    Information entropy is applied to the state of knowledge of reaction amplitudes in pseudoscalar meson photoproduction, and a scheme is developed that quantifies the information content of a measured set of polarization observables. It is shown that this definition of information is a more practical measure of the quality of a set of measured observables than whether the combination is a mathematically complete set. It is also shown that when experimental uncertainty is introduced, complete sets of measurements do not necessarily remove ambiguities, and that experiments should strive to measure as many observables as practical in order to extract amplitudes.Comment: 19 pages, 4 figures; figures updated, minor textual correction

    Orbital ordering in the ferromagnetic insulator Cs2_2AgF4_4 from first principles

    Full text link
    We found, using density-functional theory calculations within the generalized gradient approximation, that Cs2_2AgF4_4 is stabilized in the insulating orthorhombic phase rather than in the metallic tetragonal phase. The lattice distortion present in the orthorhombic phase corresponds to the x2−z2x^2-z^2/y2−z2y^2-z^2 hole-orbital ordering of the Ag2+^{2+} 4d94d^9 ions, and this orbital ordering leads to the observed ferromagnetism, as confirmed by the present total-energy calculations. This picture holds in the presence of moderate 4d-electron correlation. The results are compared with the picture of ferromagnetism based on the metallic tetragonal phase.Comment: 5 pages, 4 figures, 1 table; a few energy/moment entries in Table I are corrected due to a proper treatment of the Ag 4s semicore stat

    Design of a variable-focal-length optical system

    Get PDF
    Requirements to place an entire optical system with a variable focal length ranging from 20 to 200 cm within a overall length somewhat less than 100 cm placed severe restrictions on the design of a zoom lens suitable for use on a comet explorer. The requirements of a wavelength range of 0.4 to 1.0 microns produced even greater limitations on the possibilities for a design that included a catadioptric (using mirrors and glass) front and followed by a zooming refractive portion. Capabilities available commercial zoom lenses as well as patents of optical systems are reviewed. Preliminary designs of the refractive optics zoom lens and the catadioptric system are presented and evaluated. Of the two, the latter probably has the best chance of success, so long as the shortest focal lengths are not really needed

    The double life of electrons in magnetic iron pnictides, as revealed by NMR

    Full text link
    We present a phenomenological, two-fluid approach to understanding the magnetic excitations in Fe pnictides, in which a paramagnetic fluid with gapless, incoherent particle-hole excitations coexists with an antiferromagnetic fluid with gapped, coherent spin wave excitations. We show that this two-fluid phenomenology provides an excellent quantitative description of NMR data for magnetic "122" pnictides, and argue that it finds a natural justification in LSDA and spin density wave calculations. We further use this phenomenology to estimate the maximum renormalisation of the ordered moment that can follow from low-energy spin fluctuations in Fe pnictides. We find that this is too small to account for the discrepancy between ab intio calculations and neutron scattering measurements.Comment: Accepted for publication in Europhys. Lett. 6 pages, 4 figure

    The Minimum Description Length Principle and Model Selection in Spectropolarimetry

    Get PDF
    It is shown that the two-part Minimum Description Length Principle can be used to discriminate among different models that can explain a given observed dataset. The description length is chosen to be the sum of the lengths of the message needed to encode the model plus the message needed to encode the data when the model is applied to the dataset. It is verified that the proposed principle can efficiently distinguish the model that correctly fits the observations while avoiding over-fitting. The capabilities of this criterion are shown in two simple problems for the analysis of observed spectropolarimetric signals. The first is the de-noising of observations with the aid of the PCA technique. The second is the selection of the optimal number of parameters in LTE inversions. We propose this criterion as a quantitative approach for distinguising the most plausible model among a set of proposed models. This quantity is very easy to implement as an additional output on the existing inversion codes.Comment: Accepted for publication in the Astrophysical Journa

    A General Information Theoretical Proof for the Second Law of Thermodynamics

    Full text link
    We show that the conservation and the non-additivity of the information, together with the additivity of the entropy make the entropy increase in an isolated system. The collapse of the entangled quantum state offers an example of the information non-additivity. Nevertheless, the later is also true in other fields, in which the interaction information is important. Examples are classical statistical mechanics, social statistics and financial processes. The second law of thermodynamics is thus proven in its most general form. It is exactly true, not only in quantum and classical physics but also in other processes, in which the information is conservative and non-additive.Comment: 4 page

    Entropy exchange and entanglement in the Jaynes-Cummings model

    Full text link
    The Jaynes-Cummings model is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight (S. J. D. Phoenix, P. L. Knight, Annals of Physics 186, 381). of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e. where the rate of change of the two are anti-correlated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anti-correlation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.Comment: 8 pages, 5 figure
    • …
    corecore