14 research outputs found

    CD4-independent infection of human peripheral blood dendritic cells with isolates of human immunodeficiency virus type 1

    No full text
    Dendritic cells (DC) are members of a distinct family of bone marrow-derived leukocytes. DC are potent accessory cells for a number of T cell-mediated immune responses, including autologous and allogeneic mixed leukocyte reactions, and mitogen- and antigenstimulated lymphocyte proliferation. In the present study, DC purified from human peripheral blood were inoculated with various strains (IIIB, SF2, WMJ1, SF162, 89.6 and clone HXB2) of human immunodeficiency virus type 1 (HIV-1) displaying different patterns of cellular tropism. Viral replication was demonstrated by detection of p24 antigen (Ag) intracellularly and in culture supernatants, and by Southern and Northern blot analyses for the presence of HIV DNA and RNA, respectively, within infected cells. Cellfree and cell-associated p24 Ag levels rose substantially when DC were inoculated with strains SF162, 89.6 and clone HXB2. In contrast, p24 Ag levels rose only marginally after inoculation of DC with strains IIIB, SF2 and WMJ1. Purified DC did not express detectable membrane CD4, although CD4 mRNA was detected by reverse transcriptase PCR. The presence of anti-CD4 monoclonal antibodies failed to block infection of DC by any of the HIV strains tested, suggesting the existence of a CD4-independent alternative pathway of viral entry. The possibility that DC serve as a reservoir for HIV-1 must be considered

    Performance evaluation of the Asante Rapid Recency Assay for verification of HIV diagnosis and detection of recent HIV-1 infections: Implications for epidemic control.

    No full text
    We previously described development of a rapid test for recent infection (RTRI) that can diagnose HIV infection and detect HIV-1 recent infections in a single device. This technology was transferred to a commercial partner as Asante Rapid Recency Assay (ARRA). We evaluated performance of the ARRA kits in the laboratory using a well-characterized panel of specimens. The plasma specimen panel (N = 1500) included HIV-1 (N = 570), HIV-2 (N = 10), and HIV-negatives (N = 920) representing multiple subtypes and geographic locations. Reference diagnostic data were generated using the Bio-Rad HIV-1-2-O EIA/Western blot algorithm with further serotyping performed using the Multispot HIV-1/2 assay. The LAg-Avidity EIA was used to generate reference data on recent and long-term infection for HIV-1 positive specimens at a normalized optical density (ODn) cutoff of 2.0 corresponding to a mean duration of about 6 months. All specimens were tested with ARRA according to the manufacturer's recommendations. Test strips were also read for line intensities using a reader and results were correlated with visual interpretation. ARRA's positive verification line (PVL) correctly classified 575 of 580 HIV-positive and 910 of 920 negative specimens resulting in a sensitivity of 99.1% (95% CI: 98.0-99.6) and specificity of 98.9% (95% CI: 98.1-99.4), respectively. The reader-based classification was similar for PVL with sensitivity of 99.3% (576/580) and specificity of 98.8% (909/920). ARRA's long-term line (LTL) classified 109 of 565 HIV-1 specimens as recent and 456 as long-term compared to 98 as recent and 467 as long-term (LT) by LAg-Avidity EIA (cutoff ODn = 2.0), suggesting a mean duration of recent infection (MDRI) close to 6 months. Agreement of ARRA with LAg recent cases was 81.6% (80/98) and LT cases was 93.8% (438/467), with an overall agreement of 91.7% (kappa = 0.72). The reader (cutoff 2.9) classified 109/566 specimens as recent infections compared to 99 by the LAg-Avidity EIA for recency agreement of 81.8% (81/99), LT agreement of 9% (439/467) with overall agreement of 91.9% (kappa = 0.72). The agreement between visual interpretation and strip reader was 99.9% (95% CI: 99.6-99.9) for the PVL and 98.1% (95% CI: 96.6-98.9) for the LTL. ARRA performed well with HIV diagnostic sensitivity >99% and specificity >98%. Its ability to identify recent infections is comparable to the LA-Avidity EIA corresponding to an MDRI of about 6 months. This point-of-care assay has implications for real-time surveillance of new infections among newly diagnosed individuals for targeted prevention and interrupting ongoing transmission thus accelerating epidemic control

    Identification in gelada baboons (Theropithecus gelada) of a distinct simian T-cell lymphotropic virus type 3 with a broad range of Western blot reactivity

    No full text
    Antibodies to simian T-cell lymphotropic virus (STLV) were found in serum or plasma from 12 of 23 (52.2 %) gelada baboons (Theropithecus gelada) captive in US zoos. A variety of Western blot (WB) profiles was seen in the 12 seroreactive samples, including human T-cell lymphotropic virus (HTLV)-1-like (n=5, 41.7 %), HTLV-2-like (n=1, 8.3 %), HTLV-untypable (n=4, 33.3 %) and indeterminate (n=2, 16.6 %) profiles. Phylogenetic analysis of tax or env sequences that had been PCR amplified from peripheral blood lymphocyte DNA available from nine seropositive geladas showed that four were infected with identical STLV-1s; these sequences clustered with STLV-1 from Celebes macaques and probably represent recent cross-species infections. The tax sequences from the five remaining geladas were also identical and clustered with STLV-3. Analysis of the complete STLV-3 genome (8917 bp) from one gelada, TGE-2117, revealed that it is unique, sharing only 62 % similarity with HTLV-1/ATK and HTLV-2/Mo. STLV-3/TGE-2117 was closest genetically to STLV-3 from an Eritrean baboon (STLV-3/PH969, 95.6 %) but more distant from STLV-3s from red-capped mangabeys from Cameroon and Nigeria (STLV-3/CTO-604, 87.7 %, and STLV-3/CTO-NG409, 87.2 %, respectively) and Senegalese baboons (STLV-3/PPA-F3, 88.4 %). The genetic relatedness of STLV-3/TGE-2117 to STLV-3 was confirmed by phylogenetic analysis of a concatenated gag-pol-env-tax sequence (6795 bp). An ancient origin of 73 628-109 809 years ago for STLV-3 was estimated by molecular clock analysis of third-codon positions of gag-pol-env-tax sequences. LTR sequences from five STLV-3-positive geladas were >99 % identical and clustered with that from a Papio anubisxP. hamadryas hybrid Ethiopian baboon, suggesting a common source of STLV-3 in these sympatric animals. LTR sequences obtained 20 years apart from a mother-infant pair were identical, providing evidence of both mother-to-offspring transmission and a high genetic stability of STLV-3. Since STLV-3-infected primates show a range of HTLV-like WB profiles and have an ancient origin, further studies using STLV-3-specific testing are required to determine whether STLV-3 infects humans, especially in regions of Africa where STLV-3 is endemic.status: publishe

    Frequent Simian Foamy Virus Infection in Persons Occupationally Exposed to Nonhuman Primates

    No full text
    The recognition that AIDS originated as a zoonosis heightens public health concerns associated with human infection by simian retroviruses endemic in nonhuman primates (NHPs). These retroviruses include simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus (STLV), simian type D retrovirus (SRV), and simian foamy virus (SFV). Although occasional infection with SIV, SRV, or SFV in persons occupationally exposed to NHPs has been reported, the characteristics and significance of these zoonotic infections are not fully defined. Surveillance for simian retroviruses at three research centers and two zoos identified no SIV, SRV, or STLV infection in 187 participants. However, 10 of 187 persons (5.3%) tested positive for SFV antibodies by Western blot (WB) analysis. Eight of the 10 were males, and 3 of the 10 worked at zoos. SFV integrase gene (int) and gag sequences were PCR amplified from the peripheral blood lymphocytes available from 9 of the 10 persons. Phylogenetic analysis showed SFV infection originating from chimpanzees (n = 8) and baboons (n = 1). SFV seropositivity for periods of 8 to 26 years (median, 22 years) was documented for six workers for whom archived serum samples were available, demonstrating long-standing SFV infection. All 10 persons reported general good health, and secondary transmission of SFV was not observed in three wives available for WB and PCR testing. Additional phylogenetic analysis of int and gag sequences provided the first direct evidence identifying the source chimpanzees of the SFV infection in two workers. This study documents more frequent infection with SFV than with other simian retroviruses in persons working with NHPs and provides important information on the natural history and species origin of these infections. Our data highlight the importance of studies to better define the public health implications of zoonotic SFV infections

    Development and Application of a Broadly Sensitive Dried-Blood-Spot-Based Genotyping Assay for Global Surveillance of HIV-1 Drug Resistance â–¿

    No full text
    As antiretroviral therapy (ART) is scaled up in resource-limited countries, surveillance for HIV drug resistance (DR) is vital to ensure sustained effectiveness of first-line ART. We have developed and applied a broadly sensitive dried-blood-spot (DBS)-based genotyping assay for surveillance of HIV-1 DR in international settings. In 2005 and 2006, 171 DBS samples were collected under field conditions from newly diagnosed HIV-1-infected individuals from Malawi (n = 58), Tanzania (n = 60), and China (n =53). In addition, 30 DBS and 40 plasma specimens collected from ART patients in China and Cameroon, respectively, were also tested. Of the 171 DBS analyzed at the protease and RT regions, 149 (87.1%) could be genotyped, including 49 (81.7%) from Tanzania, 47 (88.7%) from China, and 53 (91.4%) from Malawi. Among the 70 ART patient samples analyzed, 100% (30/30) of the Chinese DBS and 90% (36/40) of the Cameroonian plasma specimens were genotyped, including 8 samples with a viral load of <400 copies/ml. The results of phylogenetic analyses indicated that the subtype, circulating recombinant form (CRF), and unique recombinant form (URF) distribution was as follows: 73 strains were subtype C (34%), 37 were subtype B (17.2%), 24 each were CRF01_AE or CRF02_AG (11.2% each), 22 were subtype A1 (10.2%), and 9 were unclassifiable (UC) (4.2%). The remaining samples were minor strains comprised of 6 that were CRF07_BC (2.8%), 5 that were CRF10_CD (2.3%), 3 each that were URF_A1C and CRF08_BC (1.4%), 2 each that were G, URF_BC, and URF_D/UC (0.9%), and 1 each that were subtype F1, subtype F2, and URF_A1D (0.5%). Our results indicate that this broadly sensitive genotyping assay can be used to genotype DBS collected from areas with diverse HIV-1 group M subtypes and CRFs. Thus, the assay is likely to become a useful screening tool in the global resistance surveillance and monitoring of HIV-1 where multiple subtypes and CRFs are found
    corecore