21 research outputs found

    An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport.

    Get PDF
    [1] Hydrologic processes control much of the export of organic matter and nutrients from the land surface. It is the variability of these hydrologic processes that produces variable patterns of nutrient transport in both space and time. In this paper, we explore how hydrologic ''connectivity'' potentially affects nutrient transport. Hydrologic connectivity is defined as the condition by which disparate regions on the hillslope are linked via subsurface water flow. We present simulations that suggest that for much of the year, water draining through a catchment is spatially isolated. Only rarely, during storm and snowmelt events when antecedent soil moisture is high, do our simulations suggest that mid-slope saturation (or near saturation) occurs and that a catchment connects from ridge to valley. Observations during snowmelt at a small headwater catchment in Idaho are consistent with these model simulations. During early season discharge episodes, in which the mid-slope soil column is not saturated, the electrical conductivity in the stream remains low, reflecting a restricted, local (lower slope) source of stream water and the continued isolation of upper and mid-slope soil water and nutrients from the stream system. Increased streamflow and higher stream water electrical conductivity, presumably reflecting the release of water from the upper reaches of the catchment, are simultaneously observed when the mid-slope becomes sufficiently wet. This study provides preliminary evidence that the seasonal timing of hydrologic connectivity may affect a range of ecological processes, including downslope nutrient transport, C/N cycling, and biological productivity along the toposequence. A better elucidation of hydrologic connectivity will be necessary for understanding local processes as well as material export from land to water at regional and global scales

    The influence of exploration mode, orientation, and configuration on the haptic Mu« ller-Lyer illusion

    No full text
    We studied the impact of manner of exploration, orientation, spatial position, and configuration on the haptic Mu« ller-Lyer illusion. Blindfolded sighted subjects felt raised-line Mu« ller-Lyer and control stimuli. The stimuli were felt by tracing with the index finger, free exploration, grasping with the index finger and thumb, or by measuring with the use of any two or more fingers. For haptic judgments of extent a sliding tangible ruler was used. The illusion was present in all exploration conditions, with overestimation of the wings-out compared to wings-in stimuli. Tracing with the index finger reduced the magnitude of the illusion. However, tracing and grasping induced an overall underestimation of size. The illusion was greatly attenuated when stimuli were felt with the index fingers of both hands. Illusory misperception was not altered by the position in space of the Mu« ller-Lyer stimuli. No effects of changes in the thickness of the line shaft were found, but there were effects of the length of the wing endings for the smaller, 5.1 cm stimuli. The theoretical and practical implications of the results are discussed

    The influence of exploration mode, orientation, and configuration on the haptic Mu« ller-Lyer illusion

    No full text
    We studied the impact of manner of exploration, orientation, spatial position, and configuration on the haptic Mu« ller-Lyer illusion. Blindfolded sighted subjects felt raised-line Mu« ller-Lyer and control stimuli. The stimuli were felt by tracing with the index finger, free exploration, grasping with the index finger and thumb, or by measuring with the use of any two or more fingers. For haptic judgments of extent a sliding tangible ruler was used. The illusion was present in all exploration conditions, with overestimation of the wings-out compared to wings-in stimuli. Tracing with the index finger reduced the magnitude of the illusion. However, tracing and grasping induced an overall underestimation of size. The illusion was greatly attenuated when stimuli were felt with the index fingers of both hands. Illusory misperception was not altered by the position in space of the Mu« ller-Lyer stimuli. No effects of changes in the thickness of the line shaft were found, but there were effects of the length of the wing endings for the smaller, 5.1 cm stimuli. The theoretical and practical implications of the results are discussed

    The influence of exploration mode, orientation, and configuration on the haptic Mu« ller-Lyer illusion

    No full text
    We studied the impact of manner of exploration, orientation, spatial position, and configuration on the haptic Mu« ller-Lyer illusion. Blindfolded sighted subjects felt raised-line Mu« ller-Lyer and control stimuli. The stimuli were felt by tracing with the index finger, free exploration, grasping with the index finger and thumb, or by measuring with the use of any two or more fingers. For haptic judgments of extent a sliding tangible ruler was used. The illusion was present in all exploration conditions, with overestimation of the wings-out compared to wings-in stimuli. Tracing with the index finger reduced the magnitude of the illusion. However, tracing and grasping induced an overall underestimation of size. The illusion was greatly attenuated when stimuli were felt with the index fingers of both hands. Illusory misperception was not altered by the position in space of the Mu« ller-Lyer stimuli. No effects of changes in the thickness of the line shaft were found, but there were effects of the length of the wing endings for the smaller, 5.1 cm stimuli. The theoretical and practical implications of the results are discussed

    The influence of exploration mode, orientation, and configuration on the haptic Mu« ller-Lyer illusion

    Get PDF
    We studied the impact of manner of exploration, orientation, spatial position, and configuration on the haptic Mu« ller-Lyer illusion. Blindfolded sighted subjects felt raised-line Mu« ller-Lyer and control stimuli. The stimuli were felt by tracing with the index finger, free exploration, grasping with the index finger and thumb, or by measuring with the use of any two or more fingers. For haptic judgments of extent a sliding tangible ruler was used. The illusion was present in all exploration conditions, with overestimation of the wings-out compared to wings-in stimuli. Tracing with the index finger reduced the magnitude of the illusion. However, tracing and grasping induced an overall underestimation of size. The illusion was greatly attenuated when stimuli were felt with the index fingers of both hands. Illusory misperception was not altered by the position in space of the Mu« ller-Lyer stimuli. No effects of changes in the thickness of the line shaft were found, but there were effects of the length of the wing endings for the smaller, 5.1 cm stimuli. The theoretical and practical implications of the results are discussed

    Comparison of threshold hydrologic response across northern catchments

    Full text link
    Nine mid-latitude to high-latitude headwater catchments – part of the Northern Watershed Ecosystem Response to Climate Change (North-Watch) programme – were used to analyze threshold response to rainfall and snowmelt-driven events and link the different responses to the catchment characteristics of the nine sites. The North-Watch data include daily time-series of various lengths of multiple variables such as air temperature, precipitation and discharge. Rainfall and meltwater inputs were differentiated using a degree-day snowmelt approach. Distinct hydrological events were identified, and precipitation-runoff response curves were visually assessed. Results showed that eight of nine catchments showed runoff initiation thresholds and effective precipitation input thresholds. For rainfall-triggered events, catchment hydroclimatic and physical characteristics (e.g. mean annual air temperature, median flow path distance to the stream, median sub-catchment area) were strong predictors of threshold strength. For snowmelt-driven events, however, thresholds and the factors controlling precipitation-runoff response were difficult to identify. The variability in catchments responses to snowmelt was not fully explained by runoff initiation thresholds and input magnitude thresholds. The quantification of input intensity thresholds (e.g. snow melting and permafrost thawing rates) is likely required for an adequate characterization of nonlinear spring runoff generation in such northern environments
    corecore