62 research outputs found

    Learning in a changing environment

    Get PDF
    Multiple cue probability learning studies have typically focused on stationary environments. We present three experiments investigating learning in changing environments. A fine-grained analysis of the learning dynamics shows that participants were responsive to both abrupt and gradual changes in cue-outcome relations. We found no evidence that participants adapted to these types of change in qualitatively different ways. Also, in contrast to earlier claims that these tasks are learned implicitly, participants showed good insight into what they learned. By fitting formal learning models, we investigated whether participants learned global functional relationships or made localized predictions from similar experienced exemplars. Both a local (the Associative Learning Model) and a global learning model (the novel Bayesian Linear Filter) fitted the data of the first two experiments. However, the results of Experiment 3, which was specifically designed to discriminate between local and global learning models, provided more support for global learning models. Finally, we present a novel model to account for the cue competition effects found in previous research and displayed by some of our participants

    There is More to Contextual Cuing than Meets the Eye:Improving Visual Search without Attentional Guidance towards Predictable Target Locations

    Get PDF
    It is usually easier to find objects in a visual scene as we gain familiarity with it. Two decades of research on contextual cuing of visual search show that repeated exposure to a search display can facilitate the detection of targets that appear at predictable locations in that display. Typical accounts for this effect attribute an essential role to learned associations between the target and other stimuli in the search display. These associations improve visual search either by driving attention towards the usual location of the target or by facilitating its recognition. Contrary to this view, we show that a robust contextual cuing effect can also be observed when repeated search displays do not allow the location of the target to be predicted. These results suggest that, in addition to the mechanisms already explored by previous research, participants learn to ignore the locations usually occupied by distractors, which in turn facilitates the detection of targets even when they appear in unpredictable locations

    A computationally and cognitively plausible model of supervised and unsupervised learning

    Get PDF
    Author version made available in accordance with the publisher's policy. "The final publication is available at link.springer.com”The issue of chance correction has been discussed for many decades in the context of statistics, psychology and machine learning, with multiple measures being shown to have desirable properties, including various definitions of Kappa or Correlation, and the psychologically validated ΔP measures. In this paper, we discuss the relationships between these measures, showing that they form part of a single family of measures, and that using an appropriate measure can positively impact learning

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    Can testing immunize memories against interference?

    No full text
    Testing typically enhances subsequent recall of tested material. In contrast, it has been proposed that consolidated memories can be destabilized when reactivated and then need to be reconsolidated in order to persist. Learning new material immediately after reactivation may disrupt reconsolidation. We investigated whether the well-known benefits of testing are counterbalanced by a tendency for retrieval to make memory more susceptible to interference. Participants learned 20 English–Swahili word pairs (List 1) on Day 1. On Day 2 one group of participants took a reminder test of List 1 immediately before learning 20 English–Finnish word pairs sharing the same cues (List 2). A second group learned List 2 without taking the reminder test of List 1, a third took the reminder test alone, and a fourth group did nothing on Day 2. On Day 3 all participants took a final test. The reminder test, far from impairing List 1 memory, enhanced it, revealing a testing effect. Furthermore, List 2 learning disrupted List 1 memory when there was no reminder test, but reminder testing immunized the memory against interference

    The benefit of generating errors during learning

    Get PDF
    Testing has been found to be a powerful learning tool, but educators might be reluctant to make full use of its benefits for fear that any errors made would be harmful to learning. We asked whether testing could be beneficial to memory even during novel learning, when nearly all responses were errors, and where errors were unlikely to be related to either cues or targets. In 4 experiments, participants learned definitions for unfamiliar English words, or translations for foreign vocabulary, by generating a response and being given corrective feedback, by reading the word and its definition or translation, or by selecting from a choice of definitions or translations followed by feedback. In a final test of all words, generating errors followed by feedback led to significantly better memory for the correct definition or translation than either reading or making incorrect choices, suggesting that the benefits of generation are not restricted to correctly generated items. Even when information to be learned is novel, errorful generation may play a powerful role in potentiating encoding of corrective feedback. Experiments 2A, 2B, and 3 revealed, via metacognitive judgments of learning, that participants are strikingly unaware of this benefit, judging errorful generation to be a less effective encoding method than reading or incorrect choosing, when in fact it was better. Predictions reflected participants' subjective experience during learning. If subjective difficulty leads to more effort at encoding, this could at least partly explain the errorful generation advantage

    Event contingencies and the judgement of causality

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D58634/86 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore