22 research outputs found

    Prognostic implications of various models for calculation of S-phase fraction in 259 patients with soft tissue sarcoma

    Get PDF
    The S-phase fraction (SPF) in flow cytometric DNA histograms in soft tissue sarcoma (STS) can be calculated in various ways. The traditional planimetric method of Baisch has been shown to be prognostic, but is hampered by a failure rate of around 40%. We therefore tested other models to see if this rate could be decreased with retained prognostic value. In 259 STS of the locomotor system the SPF was calculated according to Baisch and with commercial parametric MultiCycle software using different corrections for background. Using the Baisch model, 159 histograms could be evaluated for SPF. The 5-year metastasis-free survival rate (MFSR) was 0.94 for the low-risk group (defined with SPF), and 0.53 for the high-risk group. In the low-risk group, four of the seven patients who developed metastasis did so after 5 years. Using the MultiCycle software, SPF could be calculated in 253 tumours. Depending on type of background correction used, the 5-year MFSR varied between 0.67 and 0.82 for the low-risk group, and between 0.47 and 0.53 for the high-risk group. The late metastasis pattern in the low-risk group was never seen using the MultiCycle software. We conclude that in paraffin archival material, calculation of SPF according to Baisch is preferable in clinical use due to better separation between low-risk and high-risk groups, and also the possibility to identify patients who metastasize late. © 1999 Cancer Research Campaig

    Biomarker-based prediction of inflammatory bowel disease-related colorectal cancer: a case–control study

    Get PDF
    Regular colonoscopic surveillance for detection of dysplasia is recommended in longstanding inflammatory bowel disease (IBD), however, its sensitivity is disputed. Screening accuracy may increase by using a biomarker-based surveillance strategy.A case-control study was performed to determine the prognostic value of DNA ploidy and p53 in IBD-related neoplasia. Cases with IBD-related colorectal cancer (CRC), detected in our surveillance program between 1985-2008, were selected and matched with two controls, for age, gender, disease characteristics, interval of follow-up, PSC, and previous surgery. Biopsies were assessed for DNA ploidy, p53, grade of inflammation and neoplasia. Progression to neoplasia was analyzed with Cox regression analysis, adjusting for potentially confounding variables.Adjusting for age, we found statistically significant Hazard ratios (HR) between development of CRC, and low grade dysplasia (HR5.5; 95%CI 2.6-11.5), abnormal DNA ploidy (DNA index (DI) 1.06-1.34, HR4.7; 95%CI 2.9-7.8 and DI>1.34, HR6.6; 95%CI 3.7-11.7) and p53 immunopositivity (HR3.0; 95%CI 1.9-4.7) over time. When adjusting for all confounders, abnormal DNA ploidy (DI 1.06-1.34, HR4.7; 95%CI 2.7-7.9 and DI>1.34, HR5.0; 95%CI 2.5-10.0) and p53 immunopositivity (HR1.7; 95%CI 1.0-3.1) remained statistically significant predictive of neoplasia. In longstanding IBD, abnormal DNA ploidy and p53 immunopositivity are important risk factors of developing CRC. The yield of surveillance may potentially increase by adding these biomarkers to the routine assessment of biopsies

    Reproducibility of measurements of potential doubling time of tumour cells in the multicentre National Cancer Institute protocol T92-0045

    Get PDF
    We compared the flow cytometric measurement and analysis of the potential doubling time (Tpot) between three centres involved in the National Cancer Institute (NCI) protocol T92-0045. The primary purpose was to understand and minimize the variation within the measurement. A total of 102 specimens were selected at random from patients entered into the trial. Samples were prepared, stained, run and analysed in each centre and a single set of data analysed by all three centres. Analysis of the disc data set revealed that the measurement of labelling index (LI) was robust and reproducible. The estimation of duration of S-phase (Ts) was subject to errors of profile interpretation, particularly DNA ploidy status, and analysis. The LI dominated the variation in Tpot such that the level of final agreement, after removal of outliers and ploidy agreement, reached correlation coefficients of 0.9. The sample data showed poor agreement within each of the components of the measurement. There was some improvement when ploidy was in agreement, but correlation coefficients failed to exceed values of 0.5 for Tpot. The data suggest that observer-associated analysis of Ts and tissue processing and tumour heterogeneity were the major causes of variability in the Tpot measurement. The first two aspects can be standardized and minimized, but heterogeneity will remain a problem with biopsy techniques. © 1999 Cancer Research Campaig

    Comparison of DNA histograms by standard flow cytometry and image cytometry on sections in Barrett's adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare DNA histograms obtained by standard flow cytometry (FC) and high fidelity image cytometry on sections (ICS) in normal gastrointestinal mucosa and Barrett's adenocarcinoma (BAC).</p> <p>Methods</p> <p>Archival formalin-fixed paraffin-embedded tissue blocks of 10 normal controls from 10 subjects and 42 BAC tissues from 17 patients were examined. DNA FC was performed using standard techniques and ICS was carried out by Automated Cellular Imaging System (ACIS). DNA ploidy histograms were classified into diploid with peak DNA index (DI) at 0.9–1.1, and aneuploid with peak DI > 1.1. DI values of aneuploid peaks were determined. Additionally, for DNA ICS, heterogeneity index (HI) representing DNA content heterogeneity, and histograms containing cells with DI > G2 were also identified.</p> <p>Results</p> <p>All control samples were diploid by both FC and ICS analyses. In BAC, FC showed diploid peaks in 29%, diploid peaks with additional aneuploid or tetraploid peaks in 57%, and 14% of the samples, respectively. In contrast, ICS showed aneuploid peaks in all the cases with peak DI > 1.25; 37 cases had peak DI between 1.25 and 2.25; and 5 cases had peak DI > 2.25. HI values (mean ± SD) were 11.3 ± 1.1 in controls and 32.4 ± 8.5 in BAC (p < 0.05). Controls had no G2 exceeding cells. However, 19/37 (51%) of the cases with primary peak DI < 2.25 had cells exceeding 9N.</p> <p>Conclusion</p> <p>ICS detects DNA aneuploidy in all BAC samples while FC missed the diagnosis of aneuploidy in 29%. In addition, ICS provides more information on HI and G2 exceeding rates.</p

    Angiogenesis gene expression in murine endothelial cells during post-pneumonectomy lung growth

    Get PDF
    Although blood vessel growth occurs readily in the systemic bronchial circulation, angiogenesis in the pulmonary circulation is rare. Compensatory lung growth after pneumonectomy is an experimental model with presumed alveolar capillary angiogenesis. To investigate the genes participating in murine neoalveolarization, we studied the expression of angiogenesis genes in lung endothelial cells. After left pneumonectomy, the remaining right lung was examined on days 3, 6, 14 and 21days after surgery and compared to both no surgery and sham thoracotomy controls. The lungs were enzymatically digested and CD31+ endothelial cells were isolated using flow cytometry cell sorting. The transcriptional profile of the CD31+ endothelial cells was assessed using quantitative real-time polymerase chain reaction (PCR) arrays. Focusing on 84 angiogenesis-associated genes, we identified 22 genes with greater than 4-fold regulation and significantly enhanced transcription (p <.05) within 21 days of pneumonectomy. Cluster analysis of the 22 genes indicated that changes in gene expression did not occur in a single phase, but in at least four waves of gene expression: a wave demonstrating decreased gene expression more than 3 days after pneumonectomy and 3 sequential waves of increased expression on days 6, 14, and 21 after pneumonectomy. These findings indicate that a network of gene interactions contributes to angiogenesis during compensatory lung growth

    Prognostic value of DNA flow cytometry in stomach cancer: a 5-year prospective study

    Get PDF
    The role of DNA flow cytometry in the prediction of prognosis for patients with stomach cancer remains to be defined. Thus we studied prospectively the role of DNA flow cytometry as a prognosis indicator in stomach cancer patients in a high-incidence area. Between November 1990 and December 1992, primary stomach cancer tissues were obtained from the surgical specimens from 217 patients (148 male, 69 female). DNA flow cytometric analyses of DNA ploidy and S-phase fraction were performed and the results were correlated with patient survival. The median age of the patients was 55 years (range 24–78). Aneuploid cell population was found in 114 of 217 samples (53%). Tumour S-phase fraction was obtained in 96 of 103 diploid tumours (93%) and 61 of 114 aneuploid tumours (54%). After median follow-up of 66.1 months, the patients with tumours with an S-phase fraction over 17% had significantly worse survival rates than patients with tumours with S-phase fractions of lower than 8% or 8–17% (45% vs 59% and 63% of patients surviving, P = 0.007). Tumour ploidy status did not correlate with patient survival. Multivariate analyses showed that the TNM stage remained the most important prognostic indicator. The tumour S-phase fraction was also an independent prognostic indicator (relative risk 2.300, 95% CI, 1.252–4.223). Tumour S-phase fraction obtained by DNA flow cytometry is an independent prognostic indicator for the survival of the patients with stomach cancer. © 1999 Cancer Research Campaig

    European Working Group on Clinical Cell Analysis: Consensus protocol for the flow cytometric characterisation of platelet function

    No full text
    An increased or disturbed activation and aggregation of platelets plays a major role in the pathophysiology of thrombosis and haemostasis and is related to cardiovascular disease processes. In addition to qualitative disturbances of platelet function, changes in thrombopoiesis or an increased elimination of platelets, (e. g., in autoimmune thrombocytopenia), are also of major clinical relevance. Flow cytometry is increasingly used for the specific characterisation of phenotypic alterations of platelets which are related to cellular activation, haemostatic function and to maturation of precursor cells. These new techniques also allow the study of the in vitro response of platelets to stimuli and the modification thereof under platelet-targeted therapy as well as the characterisation of platelet-specific antibodies. In this protocol, specific flow cytometric techniques for platelet analysis are recommended based on a description of the current state of flow cytometric methodology. These recommendations are an attempt to promote the use of these new techniques which are at present broadly evaluated for diagnostic purposes. Furthermore, the definition of the still open questions primarily related to the technical details of the method should help to promote the multi-center evaluation of procedures with the goal to finally develop standardized operation procedures as the basis of interlaboratory reproducibility when applied to diagnostic testing
    corecore