19 research outputs found

    Animal models of hepatocellular carcinoma prevention

    Get PDF
    Hepatocellular carcinoma (HCC) is a deadly disease and therapeutic efficacy in advanced HCC is limited. Since progression of chronic liver disease to HCC involves a long latency period of a few decades, a significant window of therapeutic opportunities exists for prevention of HCC and improve patient prognosis. Nonetheless, there has been no clinical advancement in instituting HCC chemopreventive strategies. Some of the major challenges are heterogenous genetic aberrations of HCC, significant modulation of tumor microenvironment and incomplete understanding of HCC tumorigenesis. To this end, animal models of HCC are valuable tools to evaluate biology of tumor initiation and progression with specific insight into molecular and genetic mechanisms involved. In this review, we describe various animal models of HCC that facilitate effective ways to study therapeutic prevention strategies that have translational potential to be evaluated in a clinical context © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Poboljšan postupak sinteze nekih novih 1,3-diaril-2-propen-1-ona koristeći PEG-400 kao reciklirajuće otapalo i njihovo antimikrobno vrednovanje

    Get PDF
    A simple and convenient route is described for the synthesis of novel hetero 1,3-diaryl-2-propen-1-ones (chalcones) by using recyclable poly PEG-400 as an alternative reaction solvent. The reaction is clean with excellent yield, shorter reaction time and reduces the use of volatile organic compounds (VOCs). All the synthesized compounds were evaluated for their antimicrobial activities against several pathogenic representatives.Opisana je jednostavna i pogodna metoda sinteze novih hetero 1,3-diaril-2-propen-1-ona (kalkona) koristeći poli(etilenglikol) (PEG-400) kao alternativno otapalo. Reakcija je jednoznačna, a uporaba hlapljivih organskih otapala je smanjena. Iskorištenja na produktima su visoka, a reakcijska vremena kraća. Svi sintetizirani spojevi testirani su na antimikrobno djelovanje na nekoliko patogenih mikroorganizama

    The importance of microRNAs in RAS oncogenic activation in human cancer

    Get PDF
    microRNAs (miRNAs) regulate gene expression by modulating the translation of protein-coding RNAs. Their aberrant expression is involved in various human diseases, including cancer. Here, we summarize the experimental pieces of evidence that proved how dysregulated miRNA expression can lead to RAS (HRAS, KRAS, or NRAS) activation irrespective of their oncogenic mutations. These findings revealed relevant pathogenic mechanisms as well as mechanisms of resistance to target therapies. Based on this knowledge, potential approaches for the control of RAS oncogenic activation can be envisioned

    Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma

    No full text
    Metformin is a hypoglycaemic agent used to treat type 2 diabetes mellitus (DM2) patients, with a broad safety profile. Since previous epidemiological studies had shown that the incidence of hepatocellular carcinoma (HCC) decreased significantly in metformin treated DM2 patients, we hypothesised that intervention with metformin could reduce the risk of neoplastic transformation of hepatocytes. HCC is the most common primary liver malignancy and it generally originates in a background of liver fibrosis and cirrhosis. In the present study, we took advantage of a transgenic mouse (TG221) characterized by microRNA-221 overexpression, with cirrhotic liver background induced by chronic administration of carbon tetrachloride (CCl4). This mouse model develops fibrosis, cirrhosis and liver tumours that become visible in 100% of mice at 5–6 months of age. Our results demonstrated that metformin intervention improves liver function, inhibits hepatic stellate cell (HSC) activation, reduces liver fibrosis, depletes lipid accumulation in hepatocytes, halts progression to decompensated cirrhosis and abrogates development HCC in CCl4 challenged transgenic mouse model. The study establishes the rationale for investigating metformin in cirrhotic patients regardless of concomitant DM2 status

    Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition

    No full text
    To explore a new set of cytotoxic agents, β-carboline-combretastatin carboxamide conjugates were designed, synthesized and evaluated for their in vitro cytotoxicity potential, DNA binding affinity and Topoisomerase-II (topo-II) inhibition activity. Among the designed hybrids, 10v and 10af have shown significant cytotoxic effect against A549 (lung cancer) cell line having IC50 value 1.01 µM and 1.17 µM respectively. Further, it was speculated that treatment with compound 10v may induce apoptosis among A549 cells, which was supported by Hoechst staining, DCFDA, Annexin V-FITC and morphological assays. Flow cytometric analysis revealed that the hybrid 10v arrests A549 cells in G2/M phase of cell cycle in a dose dependent manner. Amongst the active hybrids, most potent hybrid 10v was tested for DNA topo-II inhibition activity. Moreover, to further support the biological activity and to infer the mode of interaction between ligands and DNA, spectroscopy and molecular docking studies were carried out. The docking and spectroscopy results showed that the ligands exhibited an intercalative mode of binding with DNA and could efficiently bind to DNA and form topo-II ternary complex. Based on these experiments, the hybrids 10v and 10af were identified as proficient new scaffolds which need to be developed as hit molecules for therapeutic interest

    MicroRNA-Based Prophylaxis in a Mouse Model of Cirrhosis and Liver Cancer

    Get PDF
    Most hepatocellular carcinomas (HCCs) arise in the context of chronic liver disease and/or cirrhosis. Thus, chemoprevention in individuals at risk represents an important but yet unproven approach. In this study, we investigated the ability of microRNA (miRNA)-based molecules to prevent liver cancer development in a cirrhotic model. To this end, we developed a mouse model able to recapitulate the natural progression from fibrosis to HCC, and then we tested the prophylactic activity of an miRNA-based approach in the model. The experiments were carried out in the TG221 transgenic mouse, characterized by the overexpression of miR-221 in the liver and predisposed to the development of liver tumors. TG221 as well as wild-type mice were exposed to the hepatotoxin carbon tetrachloride (CCl4) to induce chronic liver damage. All mice developed liver cirrhosis, but only TG221 mice developed nodular lesions in 100% of cases within 6 months of age. The spectrum of lesions ranged from dysplastic foci to carcinomas. To investigate miRNA-based prophylactic approaches, anti-miR-221 oligonucleotides or miR-199a-3p mimics were administered to TG221 CCl4-treated mice. Compared to control animals, a significant reduction in number, size, and, most significantly, malignant phenotype of liver nodules was observed, thus demonstrating an important prophylactic action of miRNA-based molecules. In summary, in this article, we not only report a simple model of liver cancer in a cirrhotic background but also provide evidence for a potential miRNA-based approach to reduce the risk of HCC development

    Green oxidation of indoles using halide catalysis

    No full text
    Oxidation of indoles is a fundamental organic transformation to deliver a variety of synthetically and pharmaceutically valuable nitrogen-containing compounds. Prior methods require the use of either organic oxidants (meta-chloroperoxybenzoic acid, N-bromosuccinimide, t-BuOCl) or stoichiometric toxic transition metals [Pb(OAc)4, OsO4, CrO3], which produced oxidant-derived by-products that are harmful to human health, pollute the environment and entail immediate purification. A general catalysis protocol using safer oxidants (H2O2, oxone, O2) is highly desirable. Herein, we report a unified, efficient halide catalysis for three oxidation reactions of indoles using oxone as the terminal oxidant, namely oxidative rearrangement of tetrahydro-β-carbolines, indole oxidation to 2-oxindoles, and Witkop oxidation. This halide catalysis protocol represents a general, green oxidation method and is expected to be used widely due to several advantageous aspects including waste prevention, less hazardous chemical synthesis, and sustainable halide catalysis.Published versionThis research was financially supported by Research Grant Council of Hong Kong (16311716, 16303617, 16304618) and National Natural Science Foundation of China (21772167). Dr. J.X. also acknowledged the Doctor Start-up Fund ([2018]28) and the Guizhou Province First-Class Disciplines Project (Yiliu Xueke Jianshe Xiangmu-GNYL [2017]008) from Guizhou University of Traditional Chinese Medicine (China)
    corecore