2,624 research outputs found
An Experimental Study On Load Carrying Capacity Of A Magnetic Bearing
The use of bearing is essential to all types of machines they provide the function of supporting heavier component in a desired position. These bearings have contact with the rotating part and causes surface wear which can be controlled by lubrication. The standards of performance for rotating equipment can be raised by providing robust, cost effective and easy to implement lsquoMagnetic bearingsrsquo. A radial magnetic bearing, consisting of two permanent magnets, is an attractive choice because of its zero wear, negligible friction, and low cost, but it suffers from low load capacity, low radial stiffness, lack of damping and high axial instability. To enhance the radial load and radial stiffness and reduce the axial thrust, a theoretical and experimental study of various radial configurations, including hydrodynamic lubrication to improve dynamic performance of the magnetic bearing is made
The Roton Fermi Liquid
We introduce and analyze a novel metallic phase of two-dimensional (2d)
electrons, the Roton Fermi Liquid (RFL), which, in contrast to the Landau Fermi
liquid, supports both gapless fermionic and bosonic quasiparticle excitations.
The RFL is accessed using a re-formulation of 2d electrons consisting of
fermionic quasiparticles and vortices interacting with a mutual
long-ranged statistical interaction. In the presence of a strong
vortex-antivortex (i.e. roton) hopping term, the RFL phase emerges as an exotic
yet eminently tractable new quantum ground state. The RFL phase exhibits a
``Bose surface'' of gapless roton excitations describing transverse current
fluctuations, has off-diagonal quasi-long-ranged order (ODQLRO) at zero
temperature (T=0), but is not superconducting, having zero superfluid density
and no Meissner effect. The electrical resistance {\it vanishes} as
with a power of temperature (and frequency), (with ), independent of the impurity concentration. The RFL phase also has a full
Fermi surface of quasiparticle excitations just as in a Landau Fermi liquid.
Electrons can, however, scatter anomalously from rotonic "current
fluctuations'' and "superconducting fluctuations'', leading to "hot" and "cold"
spots. Fermionic quasiparticles dominate the Hall electrical transport. We also
discuss instabilities of the RFL to a conventional Fermi liquid and a
superconductor. Precisely {\it at} the instability into the Fermi liquid state,
the exponent , so that . Upon entering the
superconducting state the anomalous quasiparticle scattering is strongly
suppressed. We discuss how the RFL phenomenology might apply to the cuprates.Comment: 43 page
The crystal structure of magnesium acetate-tetrahydrate Mg (CH<SUB>3</SUB>COO)<SUB>2</SUB>. 4 H<SUB>2</SUB>O
This article does not have an abstract
The crystal structure of p-azo-toluene (CH<SUB>3</SUB>-C<SUB>6</SUB>H<SUB>4</SUB>N)<SUB>2</SUB>
The crystal structure of p-azo-toluene has been determined by single crystal methods. The unit cell is monoclinic with a=12.01 Å, b=5.02 Å, c=9.32 Å, β=90°12'. The space-group is P21/a-C2h5 and there are two molecules per unit cell. Atomic positions were determined by electron density projections making use of 'trial and error' methods. Structure factors were obtained from visually estimated intensities on Weissenberg photographs taken with CuKα radiation. The planar benzene rings are attached by zig-zag C-N=N-C bond with the bond distance -N=N-=1.27 Å and the angle N=N-C 134°30'. The plane of the benzene ring makes an angle with the (ac) plane, its orientation is obtained by rotating it about the N-C bond by 10°. The nearest distance between two molecules in the crystal is 3.92 Å
On the low energy properies of fermions with singular interactions
We calculate the fermion Green function and particle-hole susceptibilities
for a degenerate two-dimensional fermion system with a singular gauge
interaction. We show that this is a strong coupling problem, with no small
parameter other than the fermion spin degeneracy, N. We consider two
interactions, one arising in the context of the model and the other in
the theory of half-filled Landau level. For the fermion self energy we show in
contrast to previous claims that the qualitative behavior found in the leading
order of perturbation theory is preserved to all orders in the interaction. The
susceptibility at a general wavevector retains
the fermi-liquid form. However the susceptibility either
diverges as or remains finite but with nonanalytic wavevector,
frequency and temperature dependence. We express our results in the language of
recently discussed scaling theories, give the fixed-point action, and show that
at this fixed point the fermion-gauge-field interaction is marginal in ,
but irrelevant at low energies in .Comment: 21 pages, uuencoded LATEX file with included Postscript figures, R
Hall Effect in a Quasi-One-Dimensional System
We consider the Hall effect in a system of weakly coupled one-dimensional
chains with Luttinger interaction within each chain. We construct a
perturbation theory in the inter-chain hopping term and find that there is a
power law dependence of the Hall conductivity on the magnetic field with an
exponent depending on the interaction constant. We show that this perturbation
theory becomes valid if the magnetic field is sufficiently large.Comment: 20 page
Fractional charge in transport through a 1D correlated insulator of finite length
Transport through a one channel wire of length confined between two leads
is examined when the 1D electron system has an energy gap : induced by the interaction in charge mode (: charge velocity in the
wire). In spinless case the transformation of the leads electrons into the
charge density wave solitons of fractional charge entails a non-trivial low
energy crossover from the Fermi liquid behavior below the crossover energy to the insulator one with the
fractional charge in current vs. voltage, conductance vs. temperature, and in
shot noise. Similar behavior is predicted for the Mott insulator of filling
factor .Comment: 5 twocolumn pages in RevTex, no figure
An Eddington ratio-driven origin for the LX- M∗relation in quiescent and star-forming active galaxies
A mild correlation exists in active galaxies between the mean black hole accretion, as traced by the mean X-ray luminosity and the host galaxy stellar mass M∗, characterised by a normalization steadily decreasing with cosmic time and lower in more quiescent galaxies. We create comprehensive semi-empirical mock catalogues of active black holes to pin down which parameters control the shape and evolution of the - M∗ relation of X-ray-detected active galaxies. We find that the normalization of the - M∗ relation is largely independent of the fraction of active galaxies (the duty cycle), but strongly dependent on the mean Eddington ratio, when adopting a constant underlying MBH - M∗ relation as suggested by observational studies. The data point to a decreasing mean Eddington ratio with cosmic time and with galaxy stellar mass at fixed redshift. Our data can be reproduced by black holes and galaxies evolving on similar MBH - M∗ relations but progressively decreasing their average Eddington ratios, mean X-ray luminosities, and specific star formation rates, when moving from the starburst to the quiescent phase. Models consistent with the observed - M∗ relation and independent measurements of the mean Eddington ratios are characterised by MBH - M∗ relations lower than those derived from dynamically measured local black holes. Our results point to the - M∗ relation as a powerful diagnostic to: (1) probe black hole-galaxy scaling relations and the level of accretion on to black holes; (2) efficiently break the degeneracies between duty cycles and accretion rates in cosmological models of black holes
The null energy condition and instability
We extend previous work showing that violation of the null energy condition
implies instability in a broad class of models, including gauge theories with
scalar and fermionic matter as well as any perfect fluid. Simple examples are
given to illustrate these results. The role of causality in our results is
discussed. Finally, we extend the fluid results to more general systems in
thermal equilibrium. When applied to the dark energy, our results imply that w
is unlikely to be less than -1.Comment: 11 pages, 5 figures, Revte
Beyond the random phase approximation in the Singwi-Sj\"olander theory of the half-filled Landau level
We study the Chern-Simons system and consider a self-consistent
field theory of the Singwi-Sj\"olander type which goes beyond the random phase
approximation (RPA). By considering the Heisenberg equation of motion for the
longitudinal momentum operator, we are able to show that the zero-frequency
density-density response function vanishes linearly in long wavelength limit
independent of any approximation. From this analysis, we derive a consistency
condition for a decoupling of the equal time density-density and
density-momentum correlation functions. By using the Heisenberg equation of
motion of the Wigner distribution function with a decoupling of the correlation
functions which respects this consistency condition, we calculate the response
functions of the system. In our scheme, we get a density-density
response function which vanishes linearly in the Coulomb case for
zero-frequency in the long wavelength limit. Furthermore, we derive the
compressibility, and the Landau energy as well as the Coulomb energy. These
energies are in better agreement to numerical and exact results, respectively,
than the energies calculated in the RPA.Comment: 9 Revtex pages, 4 eps figures, typos correcte
- …