92 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationPlatelet aggregation, an important part of the development of blood clots, is a complex process involving both mechanical interaction between platelets and blood, and chemical transport on and o the surfaces of those platelets. Radial Basis Function (RBF) interpolation is a meshfree method for the interpolation of multidimensional scattered data, and therefore well-suited for the development of meshfree numerical methods. This dissertation explores the use of RBF interpolation for the simulation of both the chemistry and mechanics of platelet aggregation. We rst develop a parametric RBF representation for closed platelet surfaces represented by scattered nodes in both two and three dimensions. We compare this new RBF model to Fourier models in terms of computational cost and errors in shape representation. We then augment the Immersed Boundary (IB) method, a method for uid-structure interaction, with our RBF geometric model. We apply the resultant method to a simulation of platelet aggregation, and present comparisons against the traditional IB method. We next consider a two-dimensional problem where platelets are suspended in a stationary fluid, with chemical diusion in the fluid and chemical reaction-diusion on platelet surfaces. To tackle the latter, we propose a new method based on RBF-generated nite dierences (RBF-FD) for solving partial dierential equations (PDEs) on surfaces embedded in 2D domains. To robustly tackle the former, we remove a limitation of the Augmented Forcing method (AFM), a method for solving PDEs on domains containing curved objects, using RBF-based symmetric Hermite interpolation. Next, we extend our RBF-FD method to the numerical solution of PDEs on surfaces embedded in 3D domains, proposing a new method of stabilizing RBF-FD discretizations on surfaces. We perform convergence studies and present applications motivated by biology. We conclude with a summary of the thesis research and present an overview of future research directions, including spectrally-accurate projection methods, an extension of the Regularized Stokeslet method, RBF-FD for variable-coecient diusion, and boundary conditions for RBF-FD

    A High-Order Radial Basis Function (RBF) Leray Projection Method for the Solution of the Incompressible Unsteady Stokes Equations

    Get PDF
    A new projection method based on radial basis functions (RBFs) is presented for discretizing the incompressible unsteady Stokes equations in irregular geometries. The novelty of the method comes from the application of a new technique for computing the Leray-Helmholtz projection of a vector field using generalized interpolation with divergence-free and curl-free RBFs. Unlike traditional projection methods, this new method enables matching both tangential and normal components of divergence-free vector fields on the domain boundary. This allows incompressibility of the velocity field to be enforced without any time-splitting or pressure boundary conditions. Spatial derivatives are approximated using collocation with global RBFs so that the method only requires samples of the field at (possibly scattered) nodes over the domain. Numerical results are presented demonstrating high-order convergence in both space (between 5th and 6th order) and time (up to 4th order) for some model problems in two dimensional irregular geometries.Comment: 34 pages, 8 figure

    Mesh-Free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions

    Get PDF
    We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surface-based coordinate systems. For problems involving tracer transport in a given velocity field, the semi-Lagrangian framework allows these new methods to avoid the use of any stabilization terms (such as hyperviscosity) during time-integration, thus reducing the number of parameters that have to be tuned. The three new methods are based on interpolation using 1) global RBFs, 2) local RBF stencils, and 3) RBF partition of unity. For the latter two of these methods, we find that it is crucial to include some low degree spherical harmonics in the interpolants. Standard test cases consisting of solid body rotation and deformational flow are used to compare and contrast the methods in terms of their accuracy, efficiency, conservation properties, and dissipation/dispersion errors. For global RBFs, spectral spatial convergence is observed for smooth solutions on quasi-uniform nodes, while high-order accuracy is observed for the local RBF stencil and partition of unity approaches

    A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method

    Get PDF
    The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid-structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise-linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations - radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations - for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise-linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations.Comment: 33 pages, 17 figures, Accepted (in press) by APNU
    corecore