8,682 research outputs found

    Approximate Linear Time ML Decoding on Tail-Biting Trellises in Two Rounds

    Full text link
    A linear time approximate maximum likelihood decoding algorithm on tail-biting trellises is prsented, that requires exactly two rounds on the trellis. This is an adaptation of an algorithm proposed earlier with the advantage that it reduces the time complexity from O(mlogm) to O(m) where m is the number of nodes in the tail-biting trellis. A necessary condition for the output of the algorithm to differ from the output of the ideal ML decoder is reduced and simulation results on an AWGN channel using tail-biting rrellises for two rate 1/2 convoluational codes with memory 4 and 6 respectively are reporte

    Nonlinear potential analysis techniques for supersonic aerodynamic design

    Get PDF
    A numerical method based on the conservation form of the full potential equation has been applied to the problem of three-dimensional supersonic flows with embedded subsonic regions. The governing equation is cast in a nonorthogonal coordinate system, and the theory of characteristics is used to accurately monitor the type-dependent flow field. A conservative switching scheme is employed to transition from the supersonic marching procedure to a subsonic relaxation algorithm and vice versa. The newly developed computer program can handle arbitrary geometries with fuselage, canard, wing, flow through nacelle, vertical tail and wake components at combined angles of attack and sideslip. Results are obtained for a variety of configurations that include a Langley advanced fighter concept with fuselage centerline nacelle, Rockwell's Advanced Tactical Fighter (ATF) with wing mounted nacelles, and the Shuttle Orbiter configuration. Comparisons with available experiments were good

    Magnetotransport of Dirac Fermions on the surface of a topological insulator

    Get PDF
    We study the properties of Dirac fermions on the surface of a topological insulator in the presence of crossed electric and magnetic fields. We provide an exact solution to this problem and demonstrate that, in contrast to their counterparts in graphene, these Dirac fermions allow relative tuning of the orbital and Zeeman effects of an applied magnetic field by a crossed electric field along the surface. We also elaborate and extend our earlier results on normal metal-magnetic film-normal metal (NMN) and normal metal-barrier-magnetic film (NBM) junctions of topological insulators [Phys. Rev. Lett. {\bf 104}, 046403 (2010)]. For NMN junctions, we show that for Dirac fermions with Fermi velocity vFv_F, the transport can be controlled using the exchange field J{\mathcal J} of a ferromagnetic film over a region of width dd. The conductance of such a junction changes from oscillatory to a monotonically decreasing function of dd beyond a critical J{\mathcal J} which leads to the possible realization of magnetic switches using these junctions. For NBM junctions with a potential barrier of width dd and potential V0V_0, we find that beyond a critical J{\mathcal J}, the criteria of conductance maxima changes from χ=eV0d/vF=nπ\chi= e V_0 d/\hbar v_F = n \pi to χ=(n+1/2)π\chi= (n+1/2)\pi for integer nn. Finally, we compute the subgap tunneling conductance of a normal metal-magnetic film-superconductor (NMS) junctions on the surface of a topological insulator and show that the position of the peaks of the zero-bias tunneling conductance can be tuned using the magnetization of the ferromagnetic film. We point out that these phenomena have no analogs in either conventional two-dimensional materials or Dirac electrons in graphene and suggest experiments to test our theory.Comment: 11 pages, 12 figures; v

    Tuning the conductance of Dirac fermions on the surface of a topological insulator

    Get PDF
    We study the transport properties of the Dirac fermions with Fermi velocity vFv_F on the surface of a topological insulator across a ferromagnetic strip providing an exchange field J{\mathcal J} over a region of width dd. We show that the conductance of such a junction changes from oscillatory to a monotonically decreasing function of dd beyond a critical J{\mathcal J}. This leads to the possible realization of a magnetic switch using these junctions. We also study the conductance of these Dirac fermions across a potential barrier of width dd and potential V0V_0 in the presence of such a ferromagnetic strip and show that beyond a critical J{\mathcal J}, the criteria of conductance maxima changes from χ=eV0d/vF=nπ\chi= e V_0 d/\hbar v_F = n \pi to χ=(n+1/2)π\chi= (n+1/2)\pi for integer nn. We point out that these novel phenomena have no analogs in graphene and suggest experiments which can probe them.Comment: v1 4 pages 5 fig

    Spectral reflectance measurements of a virus host model

    Get PDF
    A technique has been developed to detect the characteristic spectral signatures of healthy and infected St. Augustine grass. It is possible to predict the coverage of the infected area provided ground truth coverage shows positive St. Augustine grass turf. Qualitative measurements from photographs of plants in the blue and red regions with polarization show that light reflected from healthy plants is more strongly polarized than that from diseased plants. Photographs taken through the blue Wratten 47 filter in conjuction with a polarizer show an excellent differentiation. A large photographic difference also appears in the red region. Much smaller differences were noted in the 540 to 550 nm region. Although the intensity in the near-IR region is much higher than the visible region of the spectrum, differences in the healthy and diseased plants' reflectance were quite small

    Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays

    Full text link
    Supermassive black hole -- host galaxy relations are key to the computation of the expected gravitational wave background (GWB) in the pulsar timing array (PTA) frequency band. It has been recently pointed out that standard relations adopted in GWB computations are in fact biased-high. We show that when this selection bias is taken into account, the expected GWB in the PTA band is a factor of about three smaller than previously estimated. Compared to other scaling relations recently published in the literature, the median amplitude of the signal at f=1f=1yr1^{-1} drops from 1.3×10151.3\times10^{-15} to 4×10164\times10^{-16}. Although this solves any potential tension between theoretical predictions and recent PTA limits without invoking other dynamical effects (such as stalling, eccentricity or strong coupling with the galactic environment), it also makes the GWB detection more challenging.Comment: 6 pages 4 figures, submitted to MNRAS letter
    corecore