21 research outputs found

    DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death

    Get PDF
    Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulinā€“regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily members in their activated forms triggered two major cytoplasmic events: membrane blebbing, characteristic of several types of cell death, and extensive autophagy, which is typical of autophagic (type II) programmed cell death. These two different cellular outcomes were totally independent of caspase activity. It was also found that dominant negative mutants of DAPk or DRP-1 reduced membrane blebbing during the p55/tumor necrosis factor receptor 1ā€“induced type I apoptosis but did not prevent nuclear fragmentation. In addition, expression of the dominant negative mutant of DRP-1 or of DAPk antisense mRNA reduced autophagy induced by antiestrogens, amino acid starvation, or administration of interferon-Ī³. Thus, both endogenous DAPk and DRP-1 possess rate-limiting functions in these two distinct cytoplasmic events. Finally, immunogold staining showed that DRP-1 is localized inside the autophagic vesicles, suggesting a direct involvement of this kinase in the process of autophagy

    Modular Point-of-Care Breath Analyzer and Shape Taxonomy-Based Machine Learning for Gastric Cancer Detection

    Get PDF
    Funding Information: The development of the analysis approach and its evaluation and analysis were supported by a postdoctoral grant within the Activity 1.1.1.2 ā€œPost-doctoral Research Aidā€ co-funded by the European Regional Development Fund (postdoctoral project numbers: 1.1.1.2/VIAA/2/18/270 and 1.1.1.2/VIAA/3/19/495). Publisher Copyright: Ā© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Background: Gastric cancer is one of the deadliest malignant diseases, and the non-invasive screening and diagnostics options for it are limited. In this article, we present a multi-modular device for breath analysis coupled with a machine learning approach for the detection of cancer-specific breath from the shapes of sensor response curves (taxonomies of clusters). Methods: We analyzed the breaths of 54 gastric cancer patients and 85 control group participants. The analysis was carried out using a breath analyzer with gold nanoparticle and metal oxide sensors. The response of the sensors was analyzed on the basis of the curve shapes and other features commonly used for comparison. These features were then used to train machine learning models using NaĆÆve Bayes classifiers, Support Vector Machines and Random Forests. Results: The accuracy of the trained models reached 77.8% (sensitivity: up to 66.54%; specificity: up to 92.39%). The use of the proposed shape-based features improved the accuracy in most cases, especially the overall accuracy and sensitivity. Conclusions: The results show that this point-of-care breath analyzer and data analysis approach constitute a promising combination for the detection of gastric cancer-specific breath. The cluster taxonomy-based sensor reaction curve representation improved the results, and could be used in other similar applications.publishersversionPeer reviewe

    Death-Associated Protein Kinase Phosphorylates ZIP Kinase, Forming a Unique Kinase Hierarchy To Activate Its Cell Death Functions

    No full text
    The death-associated protein (DAP) kinase family includes three protein kinases, DAP kinase, DAP kinase-related protein 1, and ZIP kinase, which display 80% amino acid identity within their catalytic domains and are functionally linked to common subcellular changes occurring during cell death, such as the process of membrane blebbing. Here we show physical and functional cross talk between DAP kinase and ZIP kinase. The two kinases display strong synergistic effects on cell death when coexpressed and physically bind each other via their catalytic domains. Furthermore, DAP kinase phosphorylates ZIP kinase at six specific sites within its extracatalytic C-terminal domain. ZIP kinase localizes to both the nucleus and the cytoplasm and fractionates as monomeric and trimeric forms. Significantly, modification of the DAP kinase phosphorylation sites influences both the localization and oligomerization status of ZIP kinase. A mutant ZIP kinase construct, in which the six serine/threonine residues were mutated to aspartic acid to mimic the phosphorylated state, was found predominantly in the cytoplasm as a trimer and possessed greater cell death-inducing potency. This suggests that DAP kinase and ZIP kinase function in a biochemical pathway in which DAP kinase activates the cellular function of ZIP kinase through phosphorylation, leading to amplification of death-promoting signals

    Cripto Binds Transforming Growth Factor Ī² (TGF-Ī²) and Inhibits TGF-Ī² Signaling

    No full text
    Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor Ī² (TGF-Ī²) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-Ī². Cripto bound TGF-Ī² and reduced the association of TGF-Ī² with its type I receptor, TĪ²RI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-Ī² signaling in multiple cell types and diminished the cytostatic effects of TGF-Ī² in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-Ī² signaling, indicating that endogenous Cripto plays a role in restraining TGF-Ī² responses
    corecore