15 research outputs found

    Self-Similar Tilings of Fractal Blow-Ups

    Full text link
    New tilings of certain subsets of RM\mathbb{R}^{M} are studied, tilings associated with fractal blow-ups of certain similitude iterated function systems (IFS). For each such IFS with attractor satisfying the open set condition, our construction produces a usually infinite family of tilings that satisfy the following properties: (1) the prototile set is finite; (2) the tilings are repetitive (quasiperiodic); (3) each family contains self-similartilings, usually infinitely many; and (4) when the IFS is rigid in an appropriate sense, the tiling has no non-trivial symmetry; in particular the tiling is non-periodic

    Synthesis of ordered lamellar supermicroporous silica with rigid neutral and long-chain cationic composite templating route.

    No full text
    Using a mixture of neutral primary amine dehydroabietylamine (DHAA) and long-chain cetyltrimethyl ammonium bromide (CTAB) as the template, ordered lamellar supermicroporous silicas were synthesized with NaOH as the base source and tetraethylorthosilicate (TEOS) as the silica source. The concentrations of DHAA, CTAB, and NaOH in the synthesis system had great effects on the structural properties of the samples. When the molar ratio of components was nTEOS:nCTAB:nDHAA:nNaOH:nH2O = 1:0.114:0.00457:0.5:60, the material showed a lamellar phase with the highest ordering degree. By adding only a trace amount of DHAA into the synthesis system, the structure of the samples could be transformed from cubic phase to lamellar phase, since the added DHAA solubilized in CTAB micelles to change the effective surfactant ion pair packing parameter. The dosage of CTAB should be moderate; too high or too low will decay the ordering degree of the lamellar structure.A much higher concentration of NaOH resulted in an ethanol-rich solvent in which the DHAA did not solubilize in the micelles of CTAB, but adsorbed at the hydrophilic headgroup-solvent interface. Accordingly, a structural transformation from lamellar phase to hexagonal phase occurred

    Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO2 Extraction

    No full text
    The essential oil extracted from Cinnamomum camphora leaves is a mixture of volatile compounds, mainly terpenes, and is widely used in medicine, perfume and chemical industries. In this study, the extraction processes of essential oil from Cinnamomum camphora leaves by steam distillation and supercritical CO2 extraction were summarized and compared, and the camphor tree essential oil was detected by GC/MS. The extraction rate of essential oil extracted by steam distillation is less than 0.5%, while that of supercritical CO2 extraction is 4.63% at 25 MPa, 45 °C and 2.5 h. GC/MS identified 21 and 42 compounds, respectively. The content of alcohols in the essential oil is more than 35%, and that of terpenoids is more than 80%. The steam extraction method can extract volatile substances with a low boiling point and more esters and epoxides; The supercritical method is suitable for extracting weak polar substances with a high alcohol content. Supercritical CO2 extraction can selectively extract essential oil components and effectively prevent oxidation and the escape of heat sensitive substances

    Inhibitory Effects of Litsea cubeba Oil and Its Active Components on Aspergillus flavus

    No full text
    Aspergillus flavus (A. flavus) is a frequent harmful fungal pathogen. It can infect traditional Chinese medicine materials and release aflatoxin, to cause both economic and human health effects. By comparing the inhibitory potential of Litsea cubeba oil and its active components to A. flavus CGMCC 3.4408, citral was confirmed to be the main component that inhibits the growth of A. flavus CGMCC 3.4408, and the EC50 was 163.65 mg L−1. The inhibitory effect of citral on A. flavus CGMCC 3.4408 was studied for colony growth rate, mycelium biomass, aflatoxin production, and microstructure. Citral slowed down the growth rate of colonies and reduced mycelium biomass and toxin production. Moreover, citral altered the morphology of fungal spores and mycelium. In addition, citral also has the inhibitory effects on the isolates of A. flavus from moldy traditional Chinese medicinal materials. Thus, citral can be used as a potential agent to check the growth of A. flavus or related fungal strains

    Hydronopylformamides: Modification of the Naturally Occurring Compound (-)-β-Pinene to Produce Insect Repellent Candidates against Blattella germanica

    No full text
    The development of a novel repellent plays an important role in the integrated control of Blattella germanica. A series of novel hydronopylformamides derivatives were synthesized from a naturally occurring compound (-)-β-pinene. The structures of these hydronopylformamides derivatives were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR and 13C-NMR), and electron impact mass spectrometry (EI-MS). Repellency of these hydronopylformamides derivatives against Blattella germanica was evaluated by the using petri dish arena method. The results showed that four derivatives (compounds 8a, 8b, 8c and 8e) exhibited repellency against Blattella germanica at a concentration of 20 mg/mL. Compound 8a was the most active compound among these derivatives, where the repelling ratios of compound 8a against Blattella germanica were 66.10%, 50.46%, 48.26%, at concentrations of 20 mg/mL, 10 mg/mL, and 5 mg/mL, respectively. In addition, compound 8a showed better repellency than the traditional insect repellent N, N-diethyl-3-methylbenzamide (DEET), which indicated that compound 8a had a good application prospect in the prevention of Blattella germanica. This research hopes to promote the value-added utilization of (-)-β-pinene and the development of novel German cockroach repellents

    Derivatization of Natural Compound β-Pinene Enhances Its In Vitro Antifungal Activity against Plant Pathogens

    No full text
    Background: The development of new antifungal agents has always been a hot research topic in pesticide development. In this study, a series of derivatives of natural compound β-pinene were prepared, and the antifungal activities of these derivatives were evaluated. The purpose of this work is to develop some novel molecules as promising new fungicides. Methods: Through a variety of chemical reactions, β-pinene was transformed into a series of β-pinene-based derivatives containing amide moieties and acylthiourea moieties. The antifungal activities of these derivatives against five plant pathogens including Colletotrichum gloeosporioides, Fusarium proliferatum, Alternaria kikuchiana, Phomopsis sp. and Phytophthora capsici were tested; preliminary structure–activity relationship was discussed. Results: Some derivatives exhibited moderate or significant antifungal activity due to the fusion of the amide moiety or the acylthiourea moiety with the pinane skeleton. The structure–activity relationship analysis showed that the fluorine atom and the strong electron withdrawing nitro group, or trifluoromethyl group on the benzene ring of the derivatives had a significant effect on the improvement of the antifungal activity against Colletotrichum gloeosporioides, Fusarium proliferatum, Alternaria kikuchiana and Phomopsis sp. Meanwhile, the introduction of an ethyl group at the meta-position on the benzene ring of the derivatives could improve the antifungal activity against Phytophthora capsici. Compounds 4e, 4h, 4q, 4r exhibited broad-spectrum antifungal activity against the tested strains. Compound 4o had significant antifungal activity against Phytophthora capsici (IC50 = 0.18 μmol/L). These derivatives were expected to be used as precursor molecules for novel pesticide development in further research

    Synthesis route of dehydroabietyltrimethyl ammonium bromine.

    No full text
    <p>Synthesis route of dehydroabietyltrimethyl ammonium bromine.</p

    Facile Synthesis of Nitrogen Self-Doped Porous Carbon Derived from Cicada Shell via KOH Activation for Simultaneous Detection and Removal of Cu2+

    No full text
    Sensitive detection and efficient removal of heavy metal ions with high toxicity and mobility are of great importance for environmental monitoring and control. Although several kinds of functional materials have been reported for this purpose, their preparation processes are complicated. Herein, nitrogen self-doped activated porous biochar (NAC) was synthesized in a facile process via an activation&ndash;carbonization strategy from cicada shell rich in chitin, and subsequently employed as an effective functional material for the simultaneous determination and removal of Cu2+ from aqueous media. With its unique porous structure and abundant oxygen-containing functional groups, along with the presence of heteroatoms, NAC exhibits high sensitivity for the electrochemical sensing of Cu2+ in concentrations ranging from 0.001 to 1000 &mu;g&middot;L&minus;1, with a low detection limit of 0.3 ng&middot;L&minus;1. Additionally, NAC presents an excellent removal efficiency of over 78%. The maximum adsorption capacity is estimated at 110.4 mg/g. These excellent performances demonstrate that NAC could serve as an efficient platform for the detection and removal of Cu2+ in real environmental areas

    FTIR spectra of surfactant, as-synthesized and calcined supermicroporous titanias.

    No full text
    <p>FTIR spectra of surfactant, as-synthesized and calcined supermicroporous titanias.</p
    corecore