18 research outputs found

    Magnetic Field Sensing Characteristics Based on Optical Microfiber Coupler Interferometer and Magnetic Fluid

    No full text
    In this paper, a novel and compact magnetic field sensor based on the combination of an optical microfiber coupler interferometer (OMCI) and magnetic fluid (MF) is proposed. The sensor is made up of an OMCI cover with polydimethylsiloxane (PDMS) and MF, and it uses MF as a material for adjusting the magnetic refractive index and magnetic field response. The sensing characteristics of the sensor are analyzed, and the experimental test is carried out. Under the condition of the same OMC waist length, the sensor sensitivity increases with the decrease of the OMC waist radius. The sensitivity of 54.71 and 48.21 pm/Oe was obtained when the OMC waist radius was set at 3.5 and 4 μm, respectively. In addition, we also tested the sensing response time and vector response characteristics of the sensor. At the same time, we discuss the demodulation idea about the cross-sensitivity of the magnetic field and temperature. The sensor has the advantages of high sensitivity, low cost, small size, optimized performance, and convenient integration. It has huge application potential in the fields of navigation and industrial intelligent manufacturing

    Intense transient electric field sensor based on the electro-optic effect of LiNbO3

    No full text
    Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz–10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulses and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications

    Optical Microfiber All-Optical Phase Modulator for Fiber Optic Hydrophone

    No full text
    In order to meet the needs of phase generated carrier (PGC) demodulation technology for interferometric fiber optic hydrophones, we proposed an optical microfiber all-optical phase modulator (OMAOPM) based on the photo-induced thermal phase shift effect, which can be used as a phase carrier generation component, so as to make the modulation efficiency and working bandwidth of this type of modulator satisfy the requirements of underwater acoustic signal demodulation applications. We analyzed the modulation principle of this modulator and optimized the structural parameters of the optical microfiber (OM) when the waist length and waist diameter of OM are 15 mm and 1.4 μm, respectively. The modulation amplitude of the modulator can reach 1 rad, which can meet the requirements of sensing applications. On this basis, the fiber optical hydrophone PGC-Atan demodulation system was constructed, and the simulated underwater acoustic signal test demodulation research was carried out. Experimental results showed that the system can demodulate underwater acoustic signals below 1 kHz

    A shape-based inter-layer contours correspondence method for ICT-based reverse engineering

    No full text
    <div><p>The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research.</p></div

    Research on Non-Contact Voltage Measurement Method Based on Near-End Electric Field Inversion

    No full text
    Aiming at the problems of complex equations, low accuracy, and the strict measurement point layout requirements of the existing electric field integration method, a non-contact measurement method based on the inversion voltage of the near electric field is proposed. Firstly, the field source relationship is clarified, the connection between the spatial electric field and the voltage is derived, and a near-end electric field inversion method is proposed. Secondly, a three-dimensional simulation model of an overhead line is established using COMSOL finite element software, the three-dimensional spatial potential distribution of the overhead line is obtained, and the voltage is inverted and calculated. Finally, an overhead line simulation test platform was built, and MEMS electric field sensors were used for testing and verification. The results show that the maximum error of the three-phase voltage inversion of the proximal electric field measurement is 6.8%, and the error between the voltage obtained by the experimental inversion measurement and the reference voltage is less than 7.2%. The simulation and experimental results also verify the accuracy and feasibility of the inversion voltage of the proximal electric field. The results of this paper can lay a foundation for the practical application of small and miniaturized electric field sensors, and help in the construction and development of smart grids

    Illustration of the inter-layer correspondence of a circle or an arc.

    No full text
    <p>Illustration of the inter-layer correspondence of a circle or an arc.</p

    Raw data and correspondence of a carburetor.

    No full text
    <p>(A) 2~65 slices; (B) vectorized contours of the slices; (C) circles or arcs of the contours; (D) correspondence of the circles or arcs; (E) segments of the contours; (F) correspondence of the segments; (G) correspondence of the contours.</p

    Illustration of the correspondence of inter-layer segments.

    No full text
    <p>(A) <b>VCR using in segments correspondence</b>; (B) diagram 1 of the SSLCR; (C) diagram 2 of the SSLCR; (D) diagram of the TCR.</p
    corecore