15 research outputs found

    Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Get PDF
    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis

    Genome-wide analysis and characterization of Dendrocalamus farinosus SUT gene family reveal DfSUT4 involvement in sucrose transportation in plants

    Get PDF
    Sucrose is the main transported form of photosynthetic products. Sucrose transporter (SUT) participates in the translocation of sucrose from source to sink, which is important for the growth and development of plants. Dendrocalamus farinosus is an important economic crop in southwestern China because of its high growth rate, high fiber content, and dual usage for food and timber, but the mechanism of sucrose transportation in D. farinosus is unclear. In this study, a total of 12 SUT transporter genes were determined in D. farinosus by whole-genome identification. DfSUT2, DfSUT7, and DfSUT11 were homologs of rice OsSUT2, while DfSUT4 was a homolog of OsSUT4, and these four DfSUT genes were expressed in the leaf, internode, node, and bamboo shoots of D. farinosus. In addition, DfSUT family genes were involved in photosynthetic product distribution, ABA/MeJA responses, and drought resistance, especially DfSUT4. The function of DfSUT4 was then verified in Nicotiana tabacum. DfSUT4 was localized mainly in the leaf mesophyll and stem phloem of pDfSUT4::GUS transgenic plant. The overexpression of DfSUT4 gene in transgenic plant showed increases of photosynthetic rate, above-ground biomass, thousand grain weight, and cellulose content. Our findings altogether indicate that DfSUT4 can be a candidate gene that can be involved in phloem sucrose transportation from the source leaves to the sink organs, phytohormone responses, abiotic stress, and fiber formation in plants, which is very important in the genetic improvement of D. farinosus and other crops

    Divergent assembly of soil microbial necromass from microbial and organic fertilizers in Chimonobambusa hejiangensis forest

    Get PDF
    IntroductionVariability in microbial residues within soil aggregates are becoming progressively essential to the nutritive and sustainability of soils, and are therefore broadly regarded as an indispensable part of soil organic matter. It is unexplored how the widespread implementation of microbial fertilisers in agricultural production impacts soil organic nutrients, in particular the microbial residue fraction.MethodsWe performed a three-year field experiment to verify the distinct impacts of microbial and organic fertilizers on carbon accumulation in soil microbial leftovers among aggregate fractions.ResultsMicrobial residual carbon was shown to decrease insignificantly during the application of microbial fertilizer and to rise marginally afterwards with the utilization of organic fertilizer. However, the combined effects of the two fertilizers had substantial impacts on the accumulation of microbial residual carbon. Changes in the structure of the fungi and bacteria shown in this study have implications for the short-term potential of microbial fertilizer shortages to permanent soil carbon sequestration. Additionally, our findings revealed variations in microbial residue accumulation across the microbial fertilizers, with Azotobacter chroococcum fertilizer being preferable to Bacillus mucilaginosus fertilizer due to its higher efficiency. In this scenario of nutrient addition, fungal residues may serve as the primary binding component or focal point for the production of new microaggregates, since the quantity of SOC provided by fungal residues increased while that supplied by bacterial residues decreased.DiscussionOur findings collectively suggested that the mechanisms behind the observed bacterial and fungal MRC (microbial residue carbon) responses to microbial fertilizer or organic fertilizer in bamboo forest soils are likely to be distinct. The application of microbial fertilizers for a limited duration led to a decline soil stable carbon pool, potentially influencing the regulation of soil nutrients in such hilly bamboo forests

    Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    No full text
    <p>Abstract</p> <p>Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 &#956;g/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 &#956;g/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 &#956;g/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.</p

    Molecular cloning and expression analysis of seven sucrose synthase genes in bamboo (<i>Bambusa emeiensis</i>): investigation of possible roles in the regulation of cellulose biosynthesis and response to hormones

    No full text
    <p>Sucrose synthase (SUS, EC 2.4.1.13) is a key enzyme involved in sucrose metabolism. In this study, amplification by polymerase chain reaction confirmed that there are at least seven <i>SUS</i> genes (<i>BeSUS1-7</i>) in the <i>Bambusa emeiensis</i> genome. The expression patterns of the <i>BeSUSs</i> genes differed from each other in various bamboo tissues. Among these <i>BeSUSs</i>, <i>BeSUS2</i> was expressed predominately in the root and <i>BeSUS5</i> was most abundant in developing shoots, indicating that these two isozymes might play more important physiological roles in root and shoot than the other <i>BeSUSs</i> genes, respectively. In addition, <i>BeSUSs</i> response to abscisic acid (ABA), methyl jasmonate (MeJA) and 2,6-dichlorobenzonitrile treatment (2,6-DCB, an inhibitor of cellulose synthesis) was also investigated in leaves. The results showed that the expression levels of the <i>BeSUS1</i>, <i>5</i> and <i>7</i> genes were not only conspicuously induced by ABA treatment but also up-regulated by exogenous application of MeJA, indicating that these three isozymes are most likely involved in ABA and MeJA stress responses and are important in meeting the increased glycolytic demand that occurs during these stresses. Moreover, after 2,6-DCB treatment, the cellulose content of leaves was decreased and the transcripts of <i>BeSUS2</i>, <i>3</i> and <i>7</i> were markedly decreased, while those of <i>BeSUS 5</i> and <i>6</i> were conspicuously induced. The results suggest that the possible roles of <i>BeSUSs</i> genes in the pathway of sucrose metabolism, bamboo resistance to abiotic stresses and the regulation of cellulose biosynthesis may be divergent.</p

    Quantitative Analysis of Clinical Dynamic Contrast-enhanced MR Imaging for Evaluating Treatment Response in Human Breast Cancer1

    No full text
    A quantitative dynamic contrast-enhanced MR imaging method has been developed to assess treatment response to neoadjuvant chemotherapy in patients with breast cancer by using standard clinical dynamic contrast-enhanced MR imaging data without measuring either arterial input function or baseline T1
    corecore