26 research outputs found

    Enhanced Sensitivity by Nonuniform Sampling Enables Multidimensional MAS NMR Spectroscopy of Protein Assemblies

    No full text
    We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-C-13,N-15)/74-108-(U-N-15) Escherichia coil thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems

    Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range

    No full text
    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear C-13-C-13 correlation spectra. We demonstrate on model compounds and on 1-73-(U-C-13,N-15)/74-108-(U-N-15) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7-2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear C-13-C-13 MAS correlation experiments that yield high-quality artifact-free datasets

    Spin diffusion driven by R-Symmetry dequences : applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids

    No full text
    We present a family of homonuclear (13)C-(13)C magic angle spinning spin diffusion experiments, based on R2(n)(v) (n = 1 and 2, v = 1 and 2) symmetry sequences. These experiments are well suited for (13)C-(13)C correlation spectroscopy in biological and organic systems and are especially advantageous at very fast MAS conditions, where conventional PDSD and DARR experiments fail. At very fast MAS frequencies the R2(1)(1), and R2(2)(2) sequences result in excellent quality correlation spectra both in model compounds and in proteins. Under these conditions, individual R2(n)(v) display different polarization transfer efficiency dependencies on isotropic chemical shift differences: R2(2)(1) recouples efficiently both small and large chemical shift differences (in proteins these correspond to aliphatic-to-aliphatic and carbonyl-to-aliphatic correlations, respectively), while R2(1)(1) and R2(2)(2) exhibit the maximum recoupling efficiency for the aliphatic-to-aliphatic or carbonyl-to-aliphatic correlations, respectively. At moderate MAS frequencies (10-20 kHz), all R2(n)(v) sequences introduced in this work display similar transfer efficiencies, and their performance is very similar to that of PDSD and DARR. Polarization transfer dynamics and chemical shift dependencies of these R2-driven spin diffusion (RDSD) schemes are experimentally evaluated and investigated by numerical simulations for [U-(13)C,(15)N]-alanine and the [U-(13)C,(15)N] N-formyl-Met-Leu-Phe (MLF) tripeptide. Further applications of this approach are illustrated for several proteins: spherical assemblies of HIV-1 U-(13)C,(15)N CA protein,U-(13)C,(15)N-enriched dynein light chain DLC8, and sparsely (13)C/uniformly (15)N enriched CAP-Gly domain of dynactin. Due to the excellent performance and ease of implementation, the presented R2(n)(v) symmetry sequences are expected to be of wide applicability in studies of proteins and protein assemblies as well as other organic solids by MAS NMR spectroscopy

    A Time-Saving Strategy for MAS NMR Spectroscopy by Combining Nonuniform Sampling and Paramagnetic Relaxation Assisted Condensed Data Collection

    No full text
    We present a time-saving strategy for acquiring 3D magic angle spinning NMR spectra for chemical shift assignments in proteins and protein assemblies in the solid state. By simultaneous application of nonuniform sampling (NUS) and paramagnetic-relaxation-assisted condensed data collection (PACC), we can attain 16-fold time reduction in the 3D experiments without sacrificing the signal-to-noise ratio or the resolution. We demonstrate that with appropriate concentration of paramagnetic dopant introduced into the sample the overwhelming majority of chemical shifts are not perturbed, with the exception of a limited number of shifts corresponding to residues located at the surface of the protein, which exhibit small perturbations. This approach enables multidimensional MAS spectroscopy in samples of intrinsically low sensitivity and/or high spectral congestion where traditional experiments fail, and is especially beneficial for structural and dynamics studies of large proteins and protein assemblies

    Dynein and Dynactin Leverage Their Bivalent Character to Form a High-Affinity Interaction

    Get PDF
    Amanda E. Siglin is with Thomas Jefferson University, Shangjin Sun is with University of Delaware, Jeffrey K. Moore is with Washington University in Saint Louis, Sarah Tan is with UT Austin, Martin Poenie is with UT Austin, James D. Lear is with University of Pennsylvania, Tatyana Polenova is with University of Delaware, John A. Cooper is with Washington University in Saint Louis, and John C. Williams is with Thomas Jefferson University and Beckman Research Institute at City of Hope.Cytoplasmic dynein and dynactin participate in retrograde transport of organelles, checkpoint signaling and cell division. The principal subunits that mediate this interaction are the dynein intermediate chain (IC) and the dynactin p150Glued; however, the interface and mechanism that regulates this interaction remains poorly defined. Herein, we use multiple methods to show the N-terminus of mammalian dynein IC, residues 10–44, is sufficient for binding p150Glued. Consistent with this mapping, monoclonal antibodies that antagonize the dynein-dynactin interaction also bind to this region of the IC. Furthermore, double and triple alanine point mutations spanning residues 6 to 19 in the yeast IC homolog, Pac11, produce significant defects in spindle positioning. Using the same methods we show residues 381 to 530 of p150Glued form a minimal fragment that binds to the dynein IC. Sedimentation equilibrium experiments indicate that these individual fragments are predominantly monomeric, but admixtures of the IC and p150Glued fragments produce a 2:2 complex. This tetrameric complex is sensitive to salt, temperature and pH, suggesting that the binding is dominated by electrostatic interactions. Finally, circular dichroism (CD) experiments indicate that the N-terminus of the IC is disordered and becomes ordered upon binding p150Glued. Taken together, the data indicate that the dynein-dynactin interaction proceeds through a disorder-to-order transition, leveraging its bivalent-bivalent character to form a high affinity, but readily reversible interaction.This work was supported in part by National Institutes of Health R21NS071166 (J.C.W.), R01GM085306 (J.C.W. & T.P.), NCRR SRR022316A (J.C.W.), GM 47337 (J.A.C.), NCRR 5P20RR017716-07 (T.P.), 5-T32-DK07705 (A.E.S) and The American Heart Association 0715196U (A.E.S). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Cellular and Molecular Biolog

    Point-of-Care Multiplexed Assays of Nucleic Acids Using Microcapillary-based Loop-Mediated Isothermal Amplification

    No full text
    This report demonstrates a straightforward, robust, multiplexed and point-of-care microcapillary-based loop-mediated isothermal amplification (cLAMP) for assaying nucleic acids. This assay integrates capillaries (glass or plastic) to introduce and house sample/reagents, segments of water droplets to prevent contamination, pocket warmers to provide heat, and a hand-held flashlight for a visual readout of the fluorescent signal. The cLAMP system allows the simultaneous detection of two RNA targets of human immunodeficiency virus (HIV) from multiple plasma samples, and achieves a high sensitivity of two copies of standard plasmid. As few nucleic acid detection methods can be wholly independent of external power supply and equipment, our cLAMP holds great promise for point-of-care applications in resource-poor settings

    Stoichiometry of the IC-p150<sup>Glued</sup> interaction.

    No full text
    <p><i>A–C</i>. Sedimentation equilibrium: <i>A.</i> SE-AUC at 12000, 16000 and 20000 and 4°C of CC1 and IC<sup>1–124</sup>. <i>B–C.</i> SE-AUC at 10000, 20000, and 30000 rpm and 4°C of CC1A (B) and CC1B (C) with IC<sup>1–124</sup>. Both CC1 and CC1B associate much more strongly with IC<sup>1–124</sup> than CC1A.</p

    Point-of-Care Multiplexed Assays of Nucleic Acids Using Microcapillary-based Loop-Mediated Isothermal Amplification

    No full text
    This report demonstrates a straightforward, robust, multiplexed and point-of-care microcapillary-based loop-mediated isothermal amplification (cLAMP) for assaying nucleic acids. This assay integrates capillaries (glass or plastic) to introduce and house sample/reagents, segments of water droplets to prevent contamination, pocket warmers to provide heat, and a hand-held flashlight for a visual readout of the fluorescent signal. The cLAMP system allows the simultaneous detection of two RNA targets of human immunodeficiency virus (HIV) from multiple plasma samples, and achieves a high sensitivity of two copies of standard plasmid. As few nucleic acid detection methods can be wholly independent of external power supply and equipment, our cLAMP holds great promise for point-of-care applications in resource-poor settings

    Salt and pH dependence of IC-p150<sup>Glued</sup> interaction.

    No full text
    <p><i>A</i>. Sedimentation equilibrium: SE-AUC of CC1, IC<sup>1–124</sup> and the CC1-IC<sup>1–124</sup> complex in the presence of 0, 50, 100, 250, 500 mM and 1.0 M sodium chloride. No change in the oligomeric state of either CC1 or IC<sup>1–124</sup> occurs with increasing salt (inset). The CC1-IC<sup>1–124</sup> interaction is strongest at 100 mM sodium chloride and decreases upon increasing salt concentration (fitting analysis is shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0059453#pone.0059453.s008" target="_blank">Fig. S8</a>). <i>B</i>. SE-AUC of CC1, IC<sup>1–124</sup> and the CC1-IC<sup>1–124</sup> complex was run at pH 6.0, 7.0, 8.0 and 9.0. No change in oligomeric state is seen in either CC1 or IC<sup>1–124</sup>. (asterisk denotes that CC1 precipitates at pH 6.0). A strong pH dependence is seen for formation of the CC1-IC<sup>1–124</sup> complex, where the interaction is the strongest at pH 8.0 and weaker at pH 7.0 and 9.0.</p
    corecore