9,671 research outputs found

    Multivariate adaptive regression splines for estimating riverine constituent concentrations

    Get PDF
    Regression-based methods are commonly used for riverine constituent concentration/flux estimation, which is essential for guiding water quality protection practices and environmental decision making. This paper developed a multivariate adaptive regression splines model for estimating riverine constituent concentrations (MARS-EC). The process, interpretability and flexibility of the MARS-EC modelling approach, was demonstrated for total nitrogen in the Patuxent River, a major river input to Chesapeake Bay. Model accuracy and uncertainty of the MARS-EC approach was further analysed using nitrate plus nitrite datasets from eight tributary rivers to Chesapeake Bay. Results showed that the MARS-EC approach integrated the advantages of both parametric and nonparametric regression methods, and model accuracy was demonstrated to be superior to the traditionally used ESTIMATOR model. MARS-EC is flexible and allows consideration of auxiliary variables; the variables and interactions can be selected automatically. MARS-EC does not constrain concentration-predictor curves to be constant but rather is able to identify shifts in these curves from mathematical expressions and visual graphics. The MARS-EC approach provides an effective and complementary tool along with existing approaches for estimating riverine constituent concentrations

    Magnetocrystalline anisotropic effect in GdCo1x_{1-x}Fex_xAsO (x=0,0.05x = 0, 0.05)

    Full text link
    From a systematic study of the electrical resistivity ρ(T,H)\rho(T,H), magnetic susceptibility χ(T,H)\chi(T,H), isothermal magnetization M(H)M(H) and the specific heat C(T,H)C(T,H), a temperature-magnetic field (TT-HH) phase diagram has been established for GdCo1x_{1-x}Fex_xAsO (x=0x = 0 and 0.050.05) polycrystalline compounds. GdCoAsO undergoes two long-range magnetic transitions: ferromagnetic (FM) transition of Co 3d3d electrons (TCCoT_\textup{C}^\textup{Co}) and antiferromagnetic (AFM) transition of Gd 4f4f electrons (TNGdT_\textup{N}^\textup{Gd}). For the Fe-doped sample (x=0.05x=0.05), an extra magnetic reorientation transition takes place below TNGdT_\textup{N}^\textup{Gd}, which is likely associated with Co moments. The two magnetic species of Gd and Co are coupled antiferromagnetically to give rise to ferrimagnetic (FIM) behavior in the magnetic susceptibility. Upon decreasing the temperature (T<TCCoT < T_\textup{C}^\textup{Co}), the magnetocrystalline anisotropy breaks up the FM order of Co by aligning the moments with the local easy axes of the various grains, leading to a spin reorientation transition at TRCoT_\textup{R}^\textup{Co}. By applying a magnetic field, TRCoT_\textup{R}^\textup{Co} monotonically decreases to lower temperatures, while the TNGdT_\textup{N}^\textup{Gd} is relatively robust against the external field. On the other hand, the applied magnetic field pulls the magnetization of grains from the local easy direction to the field direction via a first-order reorientation transition, with the transition field (HMH_\textup{M}) increasing upon cooling the temperature.Comment: accepted by physical Review B 6 figures and 7 page

    Upper critical field and thermally activated flux flow in single crystalline Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2

    Full text link
    The upper critical field μ0Hc2(Tc)\mu_0H_{c2}(T_c) of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2 single crystals has been determined by means of measuring the electrical resistivity in both a pulsed magnetic field (\sim60T) and a DC magnetic field (\sim14T). It is found that Hc2H_{c2} linearly increases with decreasing temperature for H\textbf{H}\parallelcc, reaching μ0Hc2Hc(0K)60\mu_0H_{c2}^{\textbf{H}\parallel c}(0\textrm{K})\simeq60 T. On the other hand, a larger μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) with a strong convex curvature is observed for H\textbf{H}\perpcc (μ0Hc2Hc\mu_0H_{c2}^{\textbf{H}\perp c}(18K)\simeq60T). This compound shows a moderate anisotropy of the upper critical field around TcT_c, but decreases with decreasing temperature. Analysis of the upper critical field based on the Werthamer-Helfand-Hohenberg (WHH) method indicates that μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) is orbitally limited for H\textbf{H}\parallelcc, but the effect of spin paramagnetism may play an important role on the pair breaking for H\textbf{H}\perpcc. All these experimental observations remarkably resemble those of the iron pnictide superconductors, suggesting a unified scenario for the iron-based superconductors. Moreover, the superconducting transition is significantly broadened upon applying a magnetic field, indicating strong thermal fluctuation effects in the superconducting state of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2. The derived thermal activation energy for vortex motion is compatible with those of the 1111-type iron pnictides.Comment: 7 pages, 6 figure

    Nodeless superconductivity in the noncentrosymmetric Mo3_3Rh2_2N superconductor: a μ\muSR study

    Full text link
    The noncentrosymmetric superconductor Mo3_3Rh2_2N, with Tc=4.6T_c = 4.6 K, adopts a β\beta-Mn-type structure (space group PP41_132), similar to that of Mo3_3Al2_2C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation and relaxation (μ\muSR). The low-temperature superfluid density, measured via transverse-field (TF)-μ\muSR, evidences a fully-gapped superconducting state with Δ0=1.73kBTc\Delta_0 = 1.73 k_\mathrm{B}T_c, very close to 1.76 kBTck_\mathrm{B}T_c - the BCS gap value for the weak coupling case, and a magnetic penetration depth λ0=586\lambda_0 = 586 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined by zero-field (ZF)-μ\muSR measurements, hints at a preserved time-reversal symmetry in the superconducting state. Both TF-and ZF-μ\muSR results evidence a spin-singlet pairing in Mo3_3Rh2_2N.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid Communication in Phys. Rev.
    corecore