11,184 research outputs found

    A mesoscale finite element simulation of intermittent plastic flow of micropillar compression under hybrid loading mode

    Get PDF
    The plastic deformation of the micropillar proceeds as a series of strain bursts, showing an intermittent plastic flow. In this work, we present a stochastic finite element method in crystal plasticity to describe the intermittent characteristic of crystal deformation under the hybrid loading mode (HLM). The microscopic boundary conditions(MBCs) using the HLM are studied and they are demonstrated to be different in various deformation periods such as loading stage, burst slip and holding stage, which occur alternatively as the plastic flow proceeds. In order to determine the MBCs, we use the Monte Carlo (MC) stochastic model to predict the amplitude of the burst displacement and then incorporate such model into our established continuum framework accounting for the characteristics of the strain burst. By implementing this continuum model into the finite element analysis, we predict the plastic flow of single crystal nickel micropillars that deform under uniaxial compression along the [2 6 9] crystalline direction. The simulation results indicate clearly visible strain bursts in the course of plastic deformation, producing a stair-case like stress-strain behavior that agrees well with experimental observations. The computational results reveal that the intermittent flow in the micrometer-scale is intensified due to the increasing amplitude of the strain burst, as well as the occurrence of successive strain bursts rather than the discrete strain bursts, with decreasing of the specimen size. In addition, the micropillar displacement in the context of burst activity predicted from our simulations is similar to the experimental observations. We demonstrate that our simulation method could provide further insights into the intermittent plastic flow characteristics such as burst time duration, micropillar velocity; plus, it is feasible to apply this method to investigate the plastic flow behaviors under complex loading conditions

    An agent-based hybrid intelligent system for petroleum reservoir characterisation

    Full text link

    Effects of candesartan, an angiotensin II receptor type I blocker, on atrial remodeling in spontaneously hypertensive rats

    Get PDF
    Hypertension-induced structural remodeling of the left atrium (LA) has been suggested to involve the renin–angiotensin system. This study investigated whether treatment with an angiotensin receptor blocker, candesartan, regresses atrial remodeling in spontaneously hypertensive rats (SHR). Effects of treatment with candesartan were compared to treatment with a nonspecific vasodilatator, hydralazine. Thirty to 32-week-old adult male SHR were either untreated (n = 15) or received one of either candesartan cilexetil (n = 9; 3 mg/kg/day) or hydralazine (n = 10; 14 mg/kg/day) via their drinking water for 14 weeks prior to experiments. Untreated age- and sex-matched Wistar- Kyoto rats (WKY; n = 13) represented a normotensive control group. Untreated SHR were hypertensive, with left ventricular hypertrophy (LVH) compared to WKY, but there were no differences in systolic pressures in excised, perfused hearts. LA from SHR were hypertrophied and showed increased fibrosis compared to those from WKY, but there was no change in connexin-43 expression or phosphorylation. Treatment with candesartan reduced systolic tail artery pressures of conscious SHR below those of normotensive WKY and caused regression of both LVH and LA hypertrophy. Although hydralazine reduced SHR arterial pressures to those of WKY and led to regression of LA hypertrophy, it had no significant effect on LVH. Notably, LA fibrosis was unaffected by treatment with either agent. These data show that candesartan, at a dose sufficient to reduce blood pressure and LVH, did not cause regression of LA fibrosis in hypertensive rats. On the other hand, the data also suggest that normalization of arterial pressure can lead to the regression of LA hypertrophy

    Multivariate adaptive regression splines for estimating riverine constituent concentrations

    Get PDF
    Regression-based methods are commonly used for riverine constituent concentration/flux estimation, which is essential for guiding water quality protection practices and environmental decision making. This paper developed a multivariate adaptive regression splines model for estimating riverine constituent concentrations (MARS-EC). The process, interpretability and flexibility of the MARS-EC modelling approach, was demonstrated for total nitrogen in the Patuxent River, a major river input to Chesapeake Bay. Model accuracy and uncertainty of the MARS-EC approach was further analysed using nitrate plus nitrite datasets from eight tributary rivers to Chesapeake Bay. Results showed that the MARS-EC approach integrated the advantages of both parametric and nonparametric regression methods, and model accuracy was demonstrated to be superior to the traditionally used ESTIMATOR model. MARS-EC is flexible and allows consideration of auxiliary variables; the variables and interactions can be selected automatically. MARS-EC does not constrain concentration-predictor curves to be constant but rather is able to identify shifts in these curves from mathematical expressions and visual graphics. The MARS-EC approach provides an effective and complementary tool along with existing approaches for estimating riverine constituent concentrations

    Nodeless superconductivity in the noncentrosymmetric Mo3_3Rh2_2N superconductor: a μ\muSR study

    Full text link
    The noncentrosymmetric superconductor Mo3_3Rh2_2N, with Tc=4.6T_c = 4.6 K, adopts a β\beta-Mn-type structure (space group PP41_132), similar to that of Mo3_3Al2_2C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation and relaxation (μ\muSR). The low-temperature superfluid density, measured via transverse-field (TF)-μ\muSR, evidences a fully-gapped superconducting state with Δ0=1.73kBTc\Delta_0 = 1.73 k_\mathrm{B}T_c, very close to 1.76 kBTck_\mathrm{B}T_c - the BCS gap value for the weak coupling case, and a magnetic penetration depth λ0=586\lambda_0 = 586 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined by zero-field (ZF)-μ\muSR measurements, hints at a preserved time-reversal symmetry in the superconducting state. Both TF-and ZF-μ\muSR results evidence a spin-singlet pairing in Mo3_3Rh2_2N.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid Communication in Phys. Rev.

    Experimental and numerical investigation of role of contamination on tensile and shear strength of adhesively bonded joints in carbon fiber reinforced composites

    Get PDF
    Adhesively bonded joints are commonly used in airframe structures due to their superior strength to weight ratio, lower maintenance cost, and longer service life. The bonded joint reliability is affected by the environmental conditions, such as moisture, temperature, and service environment. In this study, the role of contamination during the bonding process on the joint mechanical integrity is examined for a set of common in-service hydraulic oils. An adhesive (Hysol EA 9394)/ adherend carbon fiber composite (Hexply IM7/8552) were examined for different contaminants exposure level. The fracture characteristics are evaluated from Double Cantilever Beam (DCB) test and Single Shear Lap. The fractal surface is analyzed by surface topographic analysis. An FEM study employing cohesive zone method was implemented. The cohesive zone properties for Mode-I and Mode-II were calibrated from a reference DCB and End-Notched Flexure tests, respectively. The experimental and modeling study showed a major effect of the contamination to lower the joint fracture toughness through both a reduction in the adhesion strength as well as shielding of plasticity within the adhesive layer. In addition, it is found that a trace level of hydraulic fluid, which is accepted as clean surface according to military standards, still degrades the bond-line strength to 70% of its rated level
    corecore