23 research outputs found

    Simulation of droplet impacting a square solid obstacle in microchannel with different wettability by using high density ratio pseudopotential multiplerelaxation- time (MRT) lattice Boltzmann Method (LBM)

    Get PDF
    In this paper, a pseudopotential high density ratio (DR) lattice Boltzmann Model was developed by incorporating multi-relaxation-time (MRT) collision matrix, large DR external force term, surface tension adjustment external force term and solid-liquid pseudopotential force. It was found that the improved model can precisely capture the two-phase interface at high DR. Besides, the effects of initial Reynolds number, Weber number, solid wall contact angle (CA), ratio of obstacle size to droplet diameter ( 1 χ ), ratio of channel width to droplet diameter ( 2 χ ) on the deformation and breakup of droplet when impacting on a square obstacle were investigated. The results showed that with the Reynolds number increasing, the droplet will fall along the obstacle and then spread along both sides of the obstacle. Besides, by increasing Weber number, the breakup of the liquid film will be delayed and the liquid film will be stretched to form an elongated ligament. With decreasing of the wettability of solid particle (CA→ 180°), the droplet will surround the obstacle and then detach from the obstacle. When 1 χ is greater than 0.5, the droplet will spread along both sides of the obstacle quickly; otherwise, the droplet will be ruptured earlier. Furthermore, when 2 χ decreases, the droplet will spread earlier and then fall along the wall more quickly; otherwise, the droplet will expand along both sides of the obstacle. Moreover, increasing the hydrophilicity of the microchannel, the droplet will impact the channel more rapidly and infiltrate the wall along the upstream and downstream simultaneously; on the contrary, the droplet will wet downstream only

    Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling

    Get PDF
    Rationale: Antimicrobial peptides, such as cathelicidin LL-37/hCAP-18, are important effectors of the innate immune system with direct antibacterial activity. In addition, LL-37 is involved in the regulation of tumor cell growth. However, the molecular mechanisms underlying the functions of LL-37 in promoting lung cancer are not fully understood. Methods: The expression of LL-37 in the tissues and sera of patients with non-small cell lung cancer was determined through immunohistological, immunofluorescence analysis, and enzyme-linked immunosorbent assay. The animal model of wild-type and Cramp knockout mice was employed to evaluate the tumorigenic effect of LL-37 in non-small cell lung cancer. The mechanism of LL-37 involving in the promotion of lung tumor growth was evaluated via microarray analyses, recombinant protein treatment approaches in vitro, tumor immunohistochemical assays, and intervention studies in vivo. Results: LL-37 produced by myeloid cells was frequently upregulated in primary human lung cancer tissues. Moreover, its expression level correlated with poor clinical outcome. LL-37 activated Wnt/β-catenin signaling by inducing the phosphorylation of protein kinase B and subsequent phosphorylation of glycogen synthase kinase 3β mediated by the toll-like receptor-4 expressed in lung tumor cells. LL-37 treatment of tumor cells also decreased the levels of Axin2. In contrast, it elevated those of an RNA-binding protein (tristetraprolin), which may be involved in the mechanism through which LL-37 induces activation of Wnt/β-catenin. Conclusion: LL-37 may be a critical molecular link between tumor-supportive immune cells and tumors, facilitating the progression of lung cancer

    Understanding the structural features of high-amylose maize starch through hydrothermal treatment

    Get PDF
    In this study, high-amylose starches were hydrothermally-treated and the structural changes were monitored with time (up to 12 h) using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). When high-amylose starches were treated in boiling water, half-shell-like granules were observed by SEM, which could be due to the first hydrolysis of the granule inner region (CLSM). This initial hydrolysis could also immediately (0.5 h) disrupt the semi-crystalline lamellar regularity (SAXS) and dramatically reduce the crystallinity (XRD); but with prolonged time of hydrothermal treatment (≥2 h), might allow the perfection or formation of amylose single helices, resulting in slightly increased crystallinity (XRD and DSC). These results show that the inner region of granules is composed of mainly loosely-packed amylopectin growth rings with semi-crystalline lamellae, which are vulnerable under gelatinization or hydrolysis. In contrast, the periphery is demonstrated to be more compact, possibly composed of amylose and amylopectin helices intertwined with amylose molecules, which require greater energy input (higher temperature) for disintegration

    Numerical analysis of coupled Kelvin–Helmholtz and Rayleigh–Taylor instability on inclined walls

    No full text
    The front tracking method was used to study the 2D Kelvin–Helmholtz (K–H) instability on an inclined wall for three-component immiscible fluids. Coupled effects between K–H instability and Rayleigh–Taylor (R–T) instability were studied by analyzing the effect of inclination angle, Atwood number (At), and Richardson number (Ri) on interface evolution. The results show that the coupling of R–T instability has an important influence on the development of K–H instability. The R–T instability first affects the lower interface and then the upper interface at different inclination angles, and it is also observed that the critical time of the coupled effect is earlier with an inclined wall. The R–T instability promotes the development of upper and lower interfaces at different At numbers. In addition, the billow height increases with the increase in At number and the influence of R–T instability on the upper interface can be neglected when the dimensionless time is less than critical time t = 0.6. The R–T instability has little effect on the different surface tension in terms of Richardson number (Riσ).The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Impact of N-Linked Glycosylation on Therapeutic Proteins

    No full text
    Therapeutic proteins have unique advantages over small-molecule drugs in the treatment of various diseases, such as higher target specificity, stronger pharmacological efficacy and relatively low side effects. These advantages make them increasingly valued in drug development and clinical practice. However, although highly valued, the intrinsic limitations in their physical, chemical and pharmacological properties often restrict their wider applications. As one of the most important post-translational modifications, glycosylation has been shown to exert positive effects on many properties of proteins, including molecular stability, and pharmacodynamic and pharmacokinetic characteristics. Glycoengineering, which involves changing the glycosylation patterns of proteins, is therefore expected to be an effective means of overcoming the problems of therapeutic proteins. In this review, we summarize recent efforts and advances in the glycoengineering of erythropoietin and IgG monoclonal antibodies, with the goals of illustrating the importance of this strategy in improving the performance of therapeutic proteins and providing a brief overview of how glycoengineering is applied to protein-based drugs

    Numerical Simulation of Bubble Free Rise after Sudden Contraction Using the Front-Tracking Method

    No full text
    Based on the front-tracking method (FTM), the movement of a single bubble that rose freely in a transverse ridged tube was simulated to analyze the influence of a contractive channel on the movement of bubbles. The influence of a symmetric contractive channel on the shape, speed, and trajectory of the bubbles was analyzed by contrasting the movement with bubbles in a noncontractive channel. As the research indicates, the bubbles became more flat when they move close to the contractive section of the channel, and the bubbles become less flat when passing through the contractive section. This effect becomes more obvious with an increase in the contractive degree of the channel. The symmetric contractive channel can make the bubbles first decelerate and later accelerate, and this effect is deeply affected by Reynolds number (Re) and Eötvös number (Eo)

    Plasma versican and plasma exosomal versican as potential diagnostic markers for non-small cell lung cancer

    No full text
    Abstract Background and aims This study aimed to investigate the expression of plasma versican and plasma exosomal versican in non-small cell lung cancer (NSCLC) and its correlation with clinicopathological features, and to evaluate its diagnostic performance in NSCLC and its predictive function for NSCLC incidence and metastasis risk. Materials and methods There were 110 instances of NSCLC, 42 cases of benign lung disease, and 55 healthy controls from September 2018 to October 2020 at Tongji Hospital Affiliated to Tongji University. Blood was collected and plasma was separated before surgery, and plasma exosomes were extracted by ExoQuick kit. Morphological and molecular phenotype identification of exosomes was performed by transmission electron microscopy, Nanosight particle tracking analysis, and western blotting. Plasma versican and plasma exosomal versican were detected in all subjects to assess their expression levels and diagnostic value in NSCLC. Clinicopathological data were collected to explore correlations between abnormal plasma versican and plasma exosomal versican expression and clinicopathological parameters. Receiver operating characteristic (ROC) curve was used to judge its diagnostic performance in NSCLC, and binary logistic regression analysis was used to predict the risk of NSCLC incidence and metastasis. Results Plasma versican and plasma exosomal versican expression in NSCLC patients was significantly upregulated and was significantly higher in T3 + T4 patients compared with T1 + T2 patients (P < 0.05); the levels of plasma versican and plasma exosomal versican were positively correlated with lymph node metastasis, distant metastases (e.g., brain, bone), and mutation(e.g., EGFR,ALK)in NSCLC patients (all P < 0.05). Furthermore, ROC curve analysis showed that plasma versican and plasma exosomal versican had higher AUC values than NSE, CYFRA21-1, and SCC, and better diagnostic performance in NSCLC patients. However, the AUC and diagnostic performances of plasma versican and plasma exosomal versican in advanced-stage NSCLC patients were not shown to be significantly better than CEA. The results of binary logistic regression analysis showed that high levels of plasma exosomal versican had higher predictive value for lung cancer incidence, while high levels of plasma versican had higher predictive value for lung cancer metastasis. Conclusion Our findings showed that plasma versican and plasma exosomal versican might be potential diagnostic markers for NSCLC. High plasma exosomal versican expression can be used as a predictor of NSCLC risk and high plasma versican expression can be used as a predictor of NSCLC metastasis risk

    Evaluation of Immunoreactivity and Protection Efficacy of Seneca Valley Virus Inactivated Vaccine in Finishing Pigs Based on Screening of Inactivated Agents and Adjuvants

    No full text
    Seneca Valley virus (SVV), also known as Senecavirus A (SVA), is a non-enveloped and single-strand positive-sense RNA virus, which belongs to the genus of Senecavirus within the family Picornaviridae. Porcine idiopathic vesicular disease (PIVD) caused by SVV has frequently been prevalent in America and Southeast Asia (especially in China) since the end of 2014, and has caused continuing issues. In this study, an SVV strain isolated in China, named SVV LNSY01-2017 (MH064435), was used as the stock virus for the preparation of an SVV-inactivated vaccine. The SVV culture was directly inactivated using binary ethyleneimine (BEI) and β-propiolactone (BPL). BPL showed a better effect as an SVV inactivator, according to the results of pH variation, inactivation kinetics, and the detection of VP1 content during inactivation. Then, SVV inactivated by BPL was subsequently emulsified using different adjuvants, including MONTANIDETM ISA 201 VG (ISA 201) and MONTANIDETM IMG 1313 VG N (IMS 1313). The immunoreactivity and protection efficacy of the inactivated vaccines were then evaluated in finishing pigs. SVV-BPL-1313 showed a better humoral response post-immunization and further challenge tests post-immunization showed that both the SVV-BPL-201 and SVV-BPL-1313 combinations could resist challenge from a virulent SVV strain. The SVV LNSY01-2017-inactivated vaccine candidate developed here represents a promising alternative to prevent and control SVV infection in swine
    corecore