11 research outputs found

    Identification of the Toxicity Pathways Associated With Thioacetamide-Induced Injuries in Rat Liver and Kidney

    Get PDF
    Ingestion or exposure to chemicals poses a serious health risk. Early detection of cellular changes induced by such events is vital to identify appropriate countermeasures to prevent organ damage. We hypothesize that chemically induced organ injuries are uniquely associated with a set (module) of genes exhibiting significant changes in expression. We have previously identified gene modules specifically associated with organ injuries by analyzing gene expression levels in liver and kidney tissue from rats exposed to diverse chemical insults. Here, we assess and validate our injury-associated gene modules by analyzing gene expression data in liver, kidney, and heart tissues obtained from Sprague-Dawley rats exposed to thioacetamide, a known liver toxicant that promotes fibrosis. The rats were injected intraperitoneally with a low (25 mg/kg) or high (100 mg/kg) dose of thioacetamide for 8 or 24 h, and definite organ injury was diagnosed by histopathology. Injury-associated gene modules indicated organ injury specificity, with the liver being most affected by thioacetamide. The most activated liver gene modules were those associated with inflammatory cell infiltration and fibrosis. Previous studies on thioacetamide toxicity and our histological analyses supported these results, signifying the potential of gene expression data to identify organ injuries

    Network Modeling of Liver Metabolism to Predict Plasma Metabolite Changes During Short-Term Fasting in the Laboratory Rat

    Get PDF
    The liver—a central metabolic organ that integrates whole-body metabolism to maintain glucose and fatty-acid regulation, and detoxify ammonia—is susceptible to injuries induced by drugs and toxic substances. Although plasma metabolite profiles are increasingly investigated for their potential to detect liver injury earlier than current clinical markers, their utility may be compromised because such profiles are affected by the nutritional state and the physiological state of the animal, and by contributions from extrahepatic sources. To tease apart the contributions of liver and non-liver sources to alterations in plasma metabolite profiles, here we sought to computationally isolate the plasma metabolite changes originating in the liver during short-term fasting. We used a constraint-based metabolic modeling approach to integrate central carbon fluxes measured in our study, and physiological flux boundary conditions gathered from the literature, into a genome-scale model of rat liver metabolism. We then measured plasma metabolite profiles in rats fasted for 5–7 or 10–13 h to test our model predictions. Our computational model accounted for two-thirds of the observed directions of change (an increase or decrease) in plasma metabolites, indicating their origin in the liver. Specifically, our work suggests that changes in plasma lipid metabolites, which are reliably predicted by our liver metabolism model, are key features of short-term fasting. Our approach provides a mechanistic model for identifying plasma metabolite changes originating in the liver

    Understanding the Pathophysiology of Thrombotic APS through Animal Models

    No full text
    Antiphospholipid syndrome (APS) is a leading acquired cause of thrombotic events, with a notable tendency to promote thrombosis in vascular beds of all sizes, including both arterial and venous circuits. While pathogenic antiphospholipid antibodies circulate at relatively stable levels in blood, thrombosis tends to manifest as discrete and acute events, suggesting the requirement for a “second hit.” While this two-hit model is generally accepted, much remains to be learned about exactly how antiphospholipid antibodies predispose to thrombosis in vivo and exactly how this predisposition interacts with the second hit. To this end, investigators have turned to animal models. Numerous approaches for modeling APS in animals have been described to date, each with potential advantages and disadvantages. This review will attempt to describe the most common APS models employed so far while discussing some pros and cons of each. Mechanisms of thrombotic APS that have thus far been explored in animal models will also be briefly addressed

    Concordance between Thioacetamide-Induced Liver Injury in Rat and Human In Vitro Gene Expression Data

    No full text
    The immense resources required and the ethical concerns for animal-based toxicological studies have driven the development of in vitro and in silico approaches. Recently, we validated our approach in which the expression of a set of genes is uniquely associated with an organ-injury phenotype (injury module), by using thioacetamide, a known liver toxicant. Here, we sought to explore whether RNA-seq data obtained from human cells (in vitro) treated with thioacetamide-S-oxide (a toxic intermediate metabolite) would correlate across species with the injury responses found in rat cells (in vitro) after exposure to this metabolite as well as in rats exposed to thioacetamide (in vivo). We treated two human cell types with thioacetamide-S-oxide (primary hepatocytes with 0 (vehicle), 0.125 (low dose), or 0.25 (high dose) mM, and renal tubular epithelial cells with 0 (vehicle), 0.25 (low dose), or 1.00 (high dose) mM) and collected RNA-seq data 9 or 24 h after treatment. We found that the liver-injury modules significantly altered in human hepatocytes 24 h after high-dose treatment involved cellular infiltration and bile duct proliferation, which are linked to fibrosis. For high-dose treatments, our modular approach predicted the rat in vivo and in vitro results from human in vitro RNA-seq data with Pearson correlation coefficients of 0.60 and 0.63, respectively, which was not observed for individual genes or KEGG pathways

    Assessing Kidney Injury Induced by Mercuric Chloride in Guinea Pigs with In Vivo and In Vitro Experiments

    No full text
    Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies

    Defibrotide Inhibits Antiphospholipid Antibody–Mediated Neutrophil Extracellular Trap Formation and Venous Thrombosis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/172357/1/art42017_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172357/2/art42017.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172357/3/art42017-sup-0001-Disclosureform.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172357/4/art42017-sup-0001-Figures.pd

    Antineutrophil properties of natural gingerols in models of lupus

    No full text
    Ginger is known to have antiinflammatory and antioxidative effects and has traditionally been used as an herbal supplement in the treatment of various chronic diseases. Here, we report antineutrophil properties of 6-gingerol, the most abundant bioactive compound of ginger root, in models of lupus and antiphospholipid syndrome (APS). Specifically, we demonstrate that 6-gingerol attenuates neutrophil extracellular trap (NET) release in response to lupus- and APS-relevant stimuli through a mechanism that is at least partially dependent on inhibition of phosphodiesterases. At the same time, administration of 6-gingerol to mice reduces NET release in various models of lupus and APS, while also improving other disease-relevant endpoints, such as autoantibody formation and large-vein thrombosis. In summary, this study is the first to our knowledge to demonstrate a protective role for ginger-derived compounds in the context of lupus. Importantly, it provides a potential mechanism for these effects via phosphodiesterase inhibition and attenuation of neutrophil hyperactivity

    Toxicant-Induced Metabolic Alterations in Lipid and Amino Acid Pathways Are Predictive of Acute Liver Toxicity in Rats

    No full text
    Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity

    Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus

    No full text
    Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex–stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex–mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions
    corecore