38 research outputs found

    ATM Regulates Insulin-Like Growth Factor 1-Secretory Clusterin (IGF-1-sCLU) Expression that Protects Cells against Senescence

    Get PDF
    Downstream factors that regulate the decision between senescence and cell death have not been elucidated. Cells undergo senescence through three pathways, replicative senescence (RS), stress-induced premature senescence (SIPS) and oncogene-induced senescence. Recent studies suggest that the ataxia telangiectasia mutant (ATM) kinase is not only a key protein mediating cellular responses to DNA damage, but also regulates cellular senescence induced by telomere end exposure (in RS) or persistent DNA damage (in SIPS). Here, we show that expression of secretory clusterin (sCLU), a known pro-survival extracellular chaperone, is transcriptionally up-regulated during both RS and SIPS, but not in oncogene-induced senescence, consistent with a DNA damage-inducible mechanism. We demonstrate that ATM plays an important role in insulin-like growth factor 1 (IGF-1) expression, that in turn, regulates downstream sCLU induction during senescence. Loss of ATM activity, either by genomic mutation (ATM-deficient fibroblasts from an ataxia telangiectasia patient) or by administration of a chemical inhibitor (AAI, an inhibitor of ATM and ATR), blocks IGF-1-sCLU expression in senescent cells. Downstream, sCLU induction during senescence is mediated by IGF-1R/MAPK/Egr-1 signaling, identical to its induction after DNA damage. In contrast, administration of an IGF-1 inhibitor caused apoptosis of senescent cells. Thus, IGF-1 signaling is required for survival, whereas sCLU appears to protect cells from premature senescence, as IMR-90 cells with sCLU knockdown undergo senescence faster than control cells. Thus, the ATM-IGF-1-sCLU pathway protects cells from lethality and suspends senescence

    Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts

    Get PDF
    hnRNP A1 is a member of the hnRNPs (heterogeneous nuclear ribonucleoproteins) family of proteins that play a central role in regulating genes responsible for cell proliferation, DNA repair, apoptosis, and telomere biogenesis. Previous studies have shown that hnRNPA1 had reduced protein levels and increased cytoplasmic accumulation in senescent human diploid fibroblasts. The consequence of reduced protein expression and altered cellular localization may account for the alterations in gene expression observed during senescence. There is limited information for gene targets of hnRNP A1 as well as its in vivo function. In these studies, we performed RNA co-immunoprecipitation experiments using hnRNP A1 as the target protein to identify potential mRNA species in ribonucleoprotein (RNP) complexes. Using this approach, we identified the human double minute 2 (HDM2) mRNA as a binding target for hnRNP A1 in young and senescent human diploid fibroblasts cells. It was also observed that alterations of hnRNP A1 expression modulate HDM2 mRNA levels in young IMR-90 cells. We also demonstrated that the levels of HDM2 mRNA increased with the downregulation of hnRNP A1 and decrease with the overexpression of hnRNP A1. Although we did not observe a significant decrease in HDM2 protein level, a concomitant increase in p53 protein level was detected with the overexpression of hnRNP A1. Our studies also show that hnRNP A1 directly interacts with HDM2 mRNA at a region corresponding to its 3′ UTR (untranslated region of a gene). The results from this study demonstrate that hnRNP A1 has a novel role in participating in the regulation of HDM2 gene expression

    Radiation dose-rate effects on gene expression for human biodosimetry

    Get PDF
    Background: The effects of dose-rate and its implications on radiation biodosimetry methods are not well studied in the context of large-scale radiological scenarios. There are significant health risks to individuals exposed to an acute dose, but a realistic scenario would include exposure to both high and low dose-rates, from both external and internal radioactivity. It is important therefore, to understand the biological response to prolonged exposure; and further, discover biomarkers that can be used to estimate damage from low-dose rate exposures and propose appropriate clinical treatment. Methods: We irradiated human whole blood ex vivo to three doses, 0.56 Gy, 2.23 Gy and 4.45 Gy, using two dose rates: acute, 1.03 Gy/min and a low dose-rate, 3.1 mGy/min. After 24 h, we isolated RNA from blood cells and these were hybridized to Agilent Whole Human genome microarrays. We validated the microarray results using qRT-PCR. Results: Microarray results showed that there were 454 significantly differentially expressed genes after prolonged exposure to all doses. After acute exposure, 598 genes were differentially expressed in response to all doses. Gene ontology terms enriched in both sets of genes were related to immune processes and B-cell mediated immunity. Genes responding to acute exposure were also enriched in functions related to natural killer cell activation and cell-to-cell signaling. As expected, the p53 pathway was found to be significantly enriched at all doses and by both dose-rates of radiation. A support vectors machine classifier was able to distinguish between dose-rates with 100% accuracy using leave-one-out cross-validation. Conclusions: In this study we found that low dose-rate exposure can result in distinctive gene expression patterns compared with acute exposures. We were able to successfully distinguish low dose-rate exposed samples from acute dose exposed samples at 24 h, using a gene expression-based classifier. These genes are candidates for further testing as markers to classify exposure based on dose-rate

    Effect of 90Sr internal emitter on gene expression in mouse blood

    Get PDF
    Background The radioactive isotope Strontium-90 (90Sr) may be released as a component of fallout from nuclear accidents, or in the event of a radiological incident such as detonation of an improvised nuclear device, and if ingested poses a significant health risk to exposed individuals. In order to better understand the response to 90Sr, using an easily attainable and standard biodosimetry sample fluid, we analyzed the global transcriptomic response of blood cells in an in vivo model system. Results We injected C57BL/6 mice with a solution of 90SrCl2 and followed them over a 30-day period. At days 4, 7, 9, 25 and 30, we collected blood and isolated RNA for microarray analyses. These days corresponded to target doses in a range from 1–5 Gy. We investigated changes in mRNA levels using microarrays, and changes in specific microRNA (miRNA) predicted to be involved in the response using qRT-PCR. We identified 8082 differentially expressed genes in the blood of mice exposed to 90Sr compared with controls. Common biological functions were affected throughout the study, including apoptosis of B and T lymphocytes, and atrophy of lymphoid organs. Cellular functions such as RNA degradation and lipid metabolism were also affected during the study. The broad down regulation of genes observed in our study suggested a potential role for miRNA in gene regulation. We tested candidate miRNAs, mmu-miR-16, mmu-miR-124, mmu-miR-125 and mmu-mir-21; and found that all were induced at the earliest time point, day 4. Conclusions Our study is the first to report the transcriptomic response of blood cells to the internal emitter 90Sr in mouse and a possible role for microRNA in gene regulation after 90Sr exposure. The most dramatic effect was observed on gene expression related to B-cell development and RNA maintenance. These functions were affected by genes that were down regulated throughout the study, suggesting severely compromised antigen response, which may be a result of the deposition of the radioisotope proximal to the hematopoietic compartment in bone

    RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response

    Get PDF
    Background Radiation induced bystander effects are an important component of the overall response of cells to irradiation and are associated with human health risks. The mechanism responsible includes intra-cellular and inter-cellular signaling by which the bystander response is propagated. However, details of the signaling mechanism are not well defined. Methods We measured the bystander response of Mrad9 +/+ and Mrad9 −/− mouse embryonic stem cells, as well as human H1299 cells with inherent or RNA interference-mediated reduced RAD9 levels after exposure to 1 Gy α particles, by scoring chromosomal aberrations and micronuclei formation, respectively. In addition, we used microarray gene expression analyses to profile the transcriptome of directly irradiated and bystander H1299 cells. Results We demonstrated that Mrad9 null enhances chromatid aberration frequency induced by radiation in bystander mouse embryonic stem cells. In addition, we found that H1299 cells with reduced RAD9 protein levels showed a higher frequency of radiation induced bystander micronuclei formation, compared with parental cells containing inherent levels of RAD9. The enhanced bystander response in human cells was associated with a unique transcriptomic profile. In unirradiated cells, RAD9 reduction broadly affected stress response pathways at the mRNA level; there was reduction in transcript levels corresponding to genes encoding multiple members of the UVA-MAPK and p38MAPK families, such as STAT1 and PARP1, suggesting that these signaling mechanisms may not function optimally when RAD9 is reduced. Using network analysis, we found that differential activation of the SP1 and NUPR1 transcriptional regulators was predicted in directly irradiated and bystander H1299 cells. Transcription factor prediction analysis also implied that HIF1α (Hypoxia induced factor 1 alpha) activation by protein stabilization in irradiated cells could be a negative predictor of the bystander response, suggesting that local hypoxic stress experienced by cells directly exposed to radiation may influence whether or not they will elicit a bystander response in neighboring cells

    Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts.</p> <p>Methods</p> <p>We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis.</p> <p>Results</p> <p>Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; <it/>chemokine ligands 2, 3 and 5 and <it/>interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposure</p> <p>Conclusions</p> <p>These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of signaling proteins in the PI3K-AKT-GSK3β pathway.</p

    Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA), a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM).</p> <p>Results</p> <p>While computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K)-specific demethylase 5B) and HDACs (histone deacetylases), which could epigenetically coordinate gene expression after irradiation.</p> <p>Conclusions</p> <p>In this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.</p
    corecore