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Abstract

Downstream factors that regulate the decision between senescence and cell death have not been elucidated. Cells undergo
senescence through three pathways, replicative senescence (RS), stress-induced premature senescence (SIPS) and
oncogene-induced senescence. Recent studies suggest that the ataxia telangiectasia mutant (ATM) kinase is not only a key
protein mediating cellular responses to DNA damage, but also regulates cellular senescence induced by telomere end
exposure (in RS) or persistent DNA damage (in SIPS). Here, we show that expression of secretory clusterin (sCLU), a known
pro-survival extracellular chaperone, is transcriptionally up-regulated during both RS and SIPS, but not in oncogene-induced
senescence, consistent with a DNA damage-inducible mechanism. We demonstrate that ATM plays an important role in
insulin-like growth factor 1 (IGF-1) expression, that in turn, regulates downstream sCLU induction during senescence. Loss of
ATM activity, either by genomic mutation (ATM-deficient fibroblasts from an ataxia telangiectasia patient) or by
administration of a chemical inhibitor (AAI, an inhibitor of ATM and ATR), blocks IGF-1-sCLU expression in senescent cells.
Downstream, sCLU induction during senescence is mediated by IGF-1R/MAPK/Egr-1 signaling, identical to its induction after
DNA damage. In contrast, administration of an IGF-1 inhibitor caused apoptosis of senescent cells. Thus, IGF-1 signaling is
required for survival, whereas sCLU appears to protect cells from premature senescence, as IMR-90 cells with sCLU
knockdown undergo senescence faster than control cells. Thus, the ATM-IGF-1-sCLU pathway protects cells from lethality
and suspends senescence.
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Introduction

Senescence has long been considered an important tumor

suppression mechanism. Cellular senescence is a terminal state in

which cells undergo permanent growth arrest accompanied by

morphological changes, e.g., an enlarged and flattened cell shape.

Cells can undergo senescence through three separate pathways

[1,2]: (i) Replicative senescence (RS), induced through shortening

of telomeres as a result of chromosome replication; (ii) Stress

induced-premature senescence (SIPS), induced by cellular stress,

such as elevated oxygen levels or cytotoxic agents causing

extensive DNA damage; and (iii) over-expression or hyper-

activation of oncogenes, such as Ras, c-myc, or BRAF, whose

mechanisms of senescence induction are poorly understood. These

senescence pathways result in cells with uncontrolled oncogene

activation or persistent and extensive DNA damage that perma-

nently arrest growth, and prevent carcinogenesis. While non-

replicative, senescent cells are still metabolically active and express

secretory factors that may significantly alter the cellular microen-

vironment. Characterization of this ‘senescence secretome’ [3],

and more importantly, determining the roles of secretory proteins

in carcinogenesis are areas of active research. Indeed, a few studies

have shown that senescent fibroblasts can promote tumor growth

through certain secreted protein factors [4,5]. Thus, senescence is

most likely beneficial to an organism when cells are young, but a

liability to organs as an organism gets older [6].

Ataxia telangiectasia mutant (ATM) kinase is a major regulator of

certain pathways of senescence. Cells undergoing RS show

telomere shortening due to repetitive replication leading to

uncapped telomeres that can be recognized as DNA double

strand breaks (DSBs) by ATM. Activated ATM can, in turn, signal

downstream effectors. For example, p53 and p21 can mediate

permanent cell cycle arrest [7,8,9,10,11]. In addition, uncapped

telomeres can also activate other DNA damage signaling kinases,

such as ATM-related kinase (ATR) and Ku-dependent DNA

protein kinase (DNA-PK). These kinases play redundant roles in

RS for sensing and responding to the environment, as well as age-

related damage accumulation. Unlike RS, the detailed mecha-

nisms underlying SIPS are less understood. Evidence indicates that

induction of SIPS is also strongly linked to DNA damage
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[10,12,13]. For example, most cell stressors that induce SIPS are

DNA damage-inducing agents, such as growth in elevated oxygen,

exposure to ionizing radiation (IR), and treatment with drugs that

generate DSBs [14,15,16,17,18,19]. All of these agents can

activate ATM, which appears to be an important mediator of

SIPS [15,17]. Nevertheless, factors that regulate the intercellular

decision-making steps of senescence (permanent growth-arrest)

and survival of cells during the senescence process have not been

elucidated.

Secretory clusterin (sCLU) is a stress-inducible, ,80 kDa

secreted glycoprotein implicated in various biological processes

[20], including cellular senescence. Although sCLU over-expres-

sion during cellular senescence has been reported, and sCLU

expression noted as a biomarker of senescence [19,21], the exact

mechanisms regulating its expression during aging have not been

elucidated. One of sCLU’s primary functions is to clear cell debris

from injured cells or tissues, thereby acting as an ‘extracellular

chaperone’ that binds stressed, unfolded proteins for recycling

[22,23]. Additionally, sCLU can protect cells from apoptosis

through its interaction with the pro-apoptotic protein, Bax [22].

sCLU also functions as a tumor promoting factor and is commonly

over-expressed in multiple human cancers, including breast, colon

and prostate. For example, sCLU over-expression has been linked

to increased aggressiveness and metastatic ability in breast cancer

[23,24], and is used as a biomarker to detect triple-negative breast

cancers [25]. Moreover, sCLU over-expression in various cancers

results in resistance to various anti-cancer drugs and ionizing

radiation (IR). Conversely, down-regulation of sCLU by antisense

RNA or small interfering RNA (siRNA) knockdown enhances the

radio2/chemo-sensitivities of human cancer cells [26].

In prior studies, we demonstrated that insulin-like growth factor

1 (IGF-1) induced sCLU via activation of the ATM/IGF-1/IGF-

1R/Src/Erk1-2/Egr-1 pathway in response to DNA damaging

agents, and we showed that sCLU is a sensitive measure of

endogenous and exogenous genomic stress [27,28]. Linking the

known damage-inducible regulation of sCLU with prior reports of

senescence-mediated sCLU over-expression, we hypothesized that

ATM-mediated IGF-1 production during senescence regulated

sCLU expression. Here, we investigated the regulation and

function of sCLU during cellular senescence. We show that sCLU

expression is regulated during senescence through the ATM-

dependent production of IGF-1 during RS and SIPS, but not in

oncogene-induced senescence. IGF-1 expression, in turn, stimu-

lates the Src/MAPK pathway leading to significant sCLU

expression. Importantly, we show that sCLU protects cells from

senescence and that selective siRNA-mediated sCLU knockdown

enhanced progression to senescence. In contrast, preventing IGF-

1-IGF-1R signaling by blocking IGF-1R kinase activity not only

suppressed sCLU expression, but caused significant lethality,

specifically in senescent cells. Our data strongly suggest that the

ATM-IGF-1/IGF-1R-sCLU pathway plays an overall protective

role during senescence, whereby IGF-1 stimulated, IGF-1R

downstream signaling is required for survival and sCLU expres-

sion suspends senescence. We speculate that accumulation of IGF-

1 and sCLU in the media of an aging microenvironment of specific

tissues could contribute to tumor promotion.

Experimental Procedures

Cell Lines and Reagents
IMR-90, BJ, HE49 cells (from Coriell) were cultured in MEM

medium (Invitrogen, Carlsbad, CA, USA), plus 10% FBS, 2 mM

glutamine, 0.5 mM sodium pyruvate. HBEC cells were a gift from

Dr. John Minna (UT Southwestern Medical Center) and cultured

in KSFM medium (Invitrogen) as described [29]. Primary human

ATM-deficient AT fibroblasts, AT2052 and GM03487, were

purchased from Coriell and cultured in MEM medium with 15%

FBS, 2 mM glutamine, 0.5 mM sodium pyruvate. Immortalized

AT fibroblasts [27], with or without restored ATM expression,

were cultured in DMEM medium with 15% FBS, 2 mM

glutamine. All cells were grown with nonessential amino acids.

Antibodies against sCLU (B5), nCLU (H330), total Erk,

phosphorylated Erk, p53 (DO1), b-actin, Egr-1, Src and

phosphorylated Src were from Santa Cruz. Antibodies against

IGF-1 receptor b-chain, phospho-IGF-1 receptor b-chain

(Tyr1135/1136), p16 and p21 were from Cell Signaling. Anti-a-

tubulin antibody was from Calbiochem. IGF-1 receptor inhibitor,

AG1024 was purchased from Sigma. ATM inhibitor, AAI

(CGK733) was purchased from Calbiochem.

An inducible sCLU shRNA plasmid, pTRIPZ-shCLU, was

constructed by sub-cloning the shCLU containing fragment from

pSM2C-shCLUmir vector (Open Biosystem, Lafayette, CO, USA)

into the pTRIPZ empty vector (Open Biosystem). The shCLU

containing fragment was amplified using a pair of primers, 59-

CTTCAGGTTAACCCAACAG-39 and 59-CGAAGT-

GATCTTCCGTCACAA-39 from pSM2C-shCLUmir, and sub-

cloned into the pTRIPZ vector using Xho I and Mlu I. The

resulting plasmid, pTRIPZ-shCLU was sequenced for insert

confirmation. The inducible non-silencing shRNA control plas-

mid, pTRIPZ-nonSilence was purchased from Open Biosystem.

The CLU promoter fused to luciferase was previously described

[28].

Oncogene-induced Senescence
Retrovirus encoding constitutive active RasV12 was transducted

into young IMR-90 cells to induce senescence as described [30].

The same batch of IMR-90 cells was also transducted with

retrovirus alone to serve as control.

Western Blot Analysis
Cells were washed with PBS once, lysed with 50–100 ml lysis

buffer (50 mM Tris pH 6.8, 1% SDS, 10% 2-mercaptoethanol,

16protease inhibitor cocktail (Roche), 16phosphatase inhibitor

cocktail 1 (Sigma), 16phosphatase inhibitor cocktail II (Sigma)).

Protein concentrations were determined by the Bradford Method

and Bio-Rad protein assay dye reagent (Bio-Rad). Western assays

were performed as described [28].

ELISA Assays
IGF-1 was detected using capturing and detecting antibodies,

MAB291 and MAF291 (R&D Systems, Minneapolis, MN, USA)

following the protocol provided by the company. Samples were

normalized to cell number and the total volume of medium.

Senescence-associated b-gal Staining
Cells were washed with PBS, fixed (2% formaldehyde, 0.2%

glutaraldehyde in 16PBS) for 5 mins, and immersed in stain

solution (40 mM Sodium Citrate, pH 6.0, 150 mM NaCl, 5 mM

potassium ferrocyanide, 5 mM potassium ferricyanide, 2 mM

MgCl2, 1 mg/ml X-gal) and incubated overnight at 37uC.

Statistics
Paired Student’s t-tests (n$3) were used to analyze experiments,

which were performed at least three times unless otherwise

specified. Statistics of population doubling curves were calculated

using mixed model analyses by Dr. Jingsheng Yan and Dr. Xian-
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Jian Xie in the Biostatistical Core of the Simmons Comprehensive

Cancer Center, U T Southwestern Medical Center.

Results

Expression of Secretory Clusterin is Transcriptionally
Increased during Senescence

To generate cells at different ages and stimulate stress-induced

premature senescence (SIPS), human normal diploid IMR-90 lung

fibroblasts were continually cultured under 20% O2. Young (Y),

middle-age (M), premature-senescent (PS), senescent (S) and late

senescent (LS) IMR-90 cells were generated over time, as indicated

by decreased population doubling and increased expression of

senescent-associated b-galactosidase-positive (SA-b-gal+) cells

(Figure 1A). Senescence was further confirmed by monitoring

specific biomarkers (i.e., known senescent mediators), including

elevated levels of phosphorylated serine15 p53 (Ser15 p53), total

p53, p21 and p16 proteins (Figure 1B). We also noted a dramatic

Figure 1. sCLU expression is increased during senescence. Young (Y), middle-age (M), premature-senescent (PS), senescent (S), and late
senescent (LS) IMR-90 cells were generated by continuous culture. (A) The ‘‘age’’ of the IMR-90 cells was determined by population doublings and
%SA-b-gal+ cell measurements. Experiments were repeated three or more times in triplicate each, and representative results are shown. (PD,
population doubling). (B) Senescence markers, phospho-ser15-p53, total p53, p21 and p16 levels, were markedly increased during senescence. (C)
Both the precursor (psCLU) and the mature secretory (sCLU) forms of clusterin were induced in total cell lysates during senescence. sCLU levels
increased in the media of senescent IMR-90 cells. (D) The promoter activity of sCLU was increased during senescence. *, p-value#0.05, **, p-value#

0.01.
doi:10.1371/journal.pone.0099983.g001
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Figure 2. sCLU expression is differently regulated in SIPS, RS and oncogene-induced senescence. (A) sCLU levels were increased during
senescence in BJ, HE45 and HBEC cells. BJ, HE45 and HBEC cells were aged by continuous cell culture and senescence status determined by %SA-b-
gal+ cells. (B) Forced expression of Ras12V represses sCLU expression. Young IMR-90 cells were transduced with lentiviral-mediated Ras12V
expression. After cells exhibited typical senescence morphology, stained SA-b-gal+, and were growth arrested, they were harvested and sCLU levels
monitored by Western blotting. Phospho-Erk-1/2 was probed to monitor the effects of Ras12V over-expression. a-Tubulin was used for a loading
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increase in pre-mature (,60 kDa psCLU) and mature (,40 kDa

sCLU) forms of clusterin (a.k.a. apolipoprotein J) protein during

senescence (Figure 1C); mature sCLU is ,80 kDa formed by

dimerization of two ,30 kDa a and b sCLU peptides that are

heavily glycosylated, but appear as ,40 kDa forms under SDS

reducing conditions. Both psCLU and sCLU protein forms were

concomitantly increased in middle-aged IMR-90 cells, and

expression of both protein forms were further increased in

premature-senescent (PS) cells, with peak levels demonstrated in

senescent (S) IMR-90 cells. Mature sCLU levels were also found

dramatically increased in the ‘conditioned’ media of middle-aged

and senescent fibroblasts (Figure 1C). To explore whether CLU

up-regulation was controlled at the transcriptional level, a human

4280 bp CLU promoter-luciferase reporter (hCLUp-Luc) was

used. hCLUp-Luc activity was increased 2-fold in middle-aged

IMR-90 cells compared to young cells, while 4-fold increased

promoter activity was observed in senescent IMR-90 cells

(Figure 1D). Overall, these data strongly suggested that sCLU

protein expression was transcriptionally up-regulated in IMR-90

cells during SIPS.

sCLU is Induced in Cells Undergoing RS or SIPS
To investigate whether sCLU expression increases were specific

to cells undergoing SIPS, we examined other normal human

diploid cells, BJ, HE49 and human bronchial epithelial cells

(HBECs), that undergo RS, and are not subject to SIPS under the

relatively elevated O2 levels found under normal tissue culture

growth conditions. In all three cells, psCLU and sCLU levels were

increased in cells undergoing RS (Figure 2A). Thus, sCLU levels

are enhanced by both RS and SIPS.

IMR-90 cells are hypersensitive, and significantly growth-

arrested, by elevated O2 levels in cell culture [31]. IMR-90 cells

underwent senescence much more rapidly when cultured in 20%

O2 compared to cells cultured under 2% O2, as indicated by

decreased population doubling times and dramatically increased

levels of SA-b-gal+ cells (Figure 2C). In contrast, BJ cells are not

particularly sensitive to oxygen (O2) and no significant difference

in their population doubling times were noted in cells cultured

under 20% versus 2% O2 (Figure 2D). Thus, BJ cells primarily

undergo RS regardless of O2 levels, and sCLU induction responses

were identical (as shown in Figure 2A) in these cells regardless of

O2 levels.

To investigate the effect of O2 levels on sCLU expression during

SIPS versus RS in IMR-90 cells, we examined psCLU and sCLU

steady state levels in IMR-90 cells cultured under 20% or 2% O2

growth conditions. sCLU levels were significantly elevated in

IMR-90 cells cultured under 20% O2 at passages (13–21) where

cells were undergoing SIPS, compared to identical cells cultured in

2% O2 (Figure 2E), in which no significant senescence was noted

(Figure 2C). Thus, sCLU expression correlated well with SIPS in

IMR-90 cells. Finally, we examined cells undergoing oncogene-

induced senescence by transfecting constitutive-active Ras12V into

young IMR-90 cells, a method commonly used to induce

oncogene-stimulated senescence [30]. Interestingly, basal sCLU

expression was repressed in Ras12V-expressed young IMR-90

cells (Figure 2B). These results are consistent with prior findings

suggesting that Ras over-expression negatively regulates sCLU

expression [32], and strongly suggests that sCLU is not induced

during oncogene-induced senescence.

Prior research from our laboratory demonstrated that sCLU

induction in response to DNA damaging agents, such as ionizing

radiation (IR), occurred through IGF-1 production, stimulating

IGF-1R/MAPK/Erk-1/2 signaling, culminating in activated Egr-

1 that transcriptionally regulated sCLU expression [28]. We

previously demonstrated that such responses were mediated by

ATM activation, and not through ATR [27]. Since both RS and

SIPS activate ATM via cellular DNA damage responses (DDR),

we treated young (P13, PD#17), middle-aged (P18, PD#36) and

senescent (P21, PD#92) IMR-90 cells with IR, then examined

sCLU expression. sCLU levels were dramatically increased in

young cells in response to IR treatment, while no additionally

increases in sCLU levels were noted in irradiated senescent IMR-

90 cells, which expressed extremely elevated basal levels of this

pro-survival protein compared to young IMR-90 cells (Figure 2F).

These results indicated that senescence-induced sCLU might

employ the same signaling pathway as DDR-induced sCLU [27].

Consistent with this pathway, we noted that Erk-1 was activated

(increased p-Erk-1/t-Erk) during senescence (Figures 2E and 2F),

and activation of Erk-1 was further induced after IR treatment in

young (Y) or middle-aged (M) IMR-90 cells. In contrast, IR

exposure of senescent (S) IMR-90 cells caused no further Erk-1

activation (Figure 2F). Thus, the signaling pathway required for

sCLU expression was already saturated in senescent IMR-90 cells.

These results again strongly suggested that senescence-induced

sCLU expression is mediated through the same signaling pathway

as DDR-induced sCLU expression noted in Goetz et al. [27].

ATM Mediates IGF-1-sCLU Expression during Senescence
ATM plays a central role in DDRs, as well as cellular

senescence through RS or SIPS, to signal downstream effectors

controlling survival and cell death [10]. To test whether ATM

regulated sCLU expression during cellular senescence, we aged

human diploid Ataxia telangiectasia (AT) patient (AT2052) fibroblasts

that lack functional ATM expression. AT2052 cells expressed

significantly lower basal level expression of sCLU compared to

wild-type ATM+ IMR-90 cells. These data are consistent with

prior data from our lab, where ATM controlled IGF-1-sCLU

expression after DNA damaging agents, and low basal levels of

sCLU noted in AT cells were noted as resulting from detectable

IGF-1 in the growth medium [27]. As expected, sCLU was not

induced in senescent AT2052 versus IMR-90 cells (Figure 3A).

Furthermore, AT cells were capable of inducing sCLU, since

exposure of AT2052 cells with IGF-1 resulted in significant sCLU

expression in 24 h compared to untreated control cells, and sCLU

levels remain elevated 72 h after IGF-1 exposure (Figure 3B).

Accordingly, activated Erk (increased P-Erk/t-Erk) was concom-

itantly noted 24 h after IGF-1 treatment (Figure 3B). These results

indicated that signaling from IGF-1/IGF-1R to sCLU was still

intact in ATM-deficient AT2052 cells. To further confirm this

finding, another AT cell line (GM03487) was treated with IGF-1,

and similarly, sCLU expression was increased in GM03487 cells

24 h post-treatment (Figure 3B). Similar results were also observed

control. (C) IMR-90 cells cultured in 20% oxygen (O2) underwent senescence faster than cells cultured in 2% O2. The population doubling of IMR-90
cells cultured in 20% O2 decreased faster than cells cultured in 2% O2. (D) BJ cells were not affected by different O2 tensions. In contrast to IMR-90
cells, the population doublings of BJ cells were identical whether cultured in 20% or 2% O2. (E) sCLU levels increased in IMR-90 cells cultured in 20%
O2 compared to levels found in IMR-90 cells cultured in 2% O2 in both early and late passage cells. (F) Young (Y), middle-aged (M), and senescent (S)
IMR-90 cells were treated with IR (10 Gy). psCLU, sCLU, total Erk-1/2 (Erk) and phosphorylated Erk-1/2 (pErk) were detected by western blot analyses.
For (C) and (D), representative results are presented from at least three repeat experiments with similar results.
doi:10.1371/journal.pone.0099983.g002
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Figure 3. ATM is required for sCLU induction during senescence. (A) ATM-deficient AT cells have extremely low basal sCLU levels, where
expression is regulated purely by IGF-1 in the medium [27]. sCLU levels were increased in both total lysates and in the medium from senescent IMR-
90 cells, however, sCLU was not changed during senescence in AT2052 cells. The %SA-b-gal+ cells in the population from young IMR-90 cells was ,
5%, whereas the percentage of senescent IMR-90 cells was .60%. The %SA-b-gal+ cells in the Young AT2052 cell population was ,20%, whereas the
senescent population was .60% for AT2052 cells. (B) IGF-1 induced sCLU in ATM-deficient, AT fibroblasts. ATM-deficient AT2052 or GM03487 cells
were cultured in 0.2% FBS medium overnight, and then treated with IGF-1 (10 ng/ml). Cells were harvested at the indicated times and sCLU as well as
total and phospho-Erk-1/2 levels were measured by Western Blotting from total cell lysates. a-Tubulin levels were used for loading. (C) IGF-1 induces
sCLU in genetically matched ATM-deficient and -proficient AT cells. Immortalized AT cells (AT2/2) and wild type, ATM reconstituted cells (ATM+)
were cultured in 0.2% FBS medium overnight. IGF-1 (10 ng/ml) was then added in both ATM+ and ATM2/2 cells. Cells were harvested at indicated
times and sCLU and a-tubulin levels were monitored as described above. (D) Inhibition of ATM activity represses sCLU expression in senescent IMR-90
cells. psCLU and sCLU were repressed by the ATM inhibitor, AAI, in both total cell lysates and medium from senescent IMR-90 cells (%SA-b-gal+ were
.60%). These cells were pre-cultured in 0.2% FBS medium overnight, then treated with 1.0 or 2.5 mM AAI or exposed to vehicle alone. After
treatment (48 h), cells and medium were collected and Western Blot analyses were performed to measure sCLU level. a-Tubulin levels were used to
monitor loading. (E) Inhibition of ATM activity repressed IGF-1 expression in senescent IMR-90 cells. IGF-1 levels in the media from cells in (D) were
measured using ELISAs as described in ‘Materials and Methods’. Human recombinant IGF-1 was used as standard. Results were normalized to both
total volume of medium and total cell number.
doi:10.1371/journal.pone.0099983.g003
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using a pair of immortalized AT cells lacking or reconstituted with

ATM (Figure 3C), as demonstrated in Goetz et al., [27].

Collectively, these data are consistent with an ATM-mediated,

IGF-1-regulated sCLU expression pathway that signals through

the IGF-1 receptor (IGF-1R)/MAPK/Erk-1/2/Egr-1 signaling

pathway. The low level of constitutive sCLU expression, and lack

of induction of sCLU during senescence in AT cells is due to the

lack of functional ATM and not due to signaling from IGF-1/IGF-

1R to sCLU expression. These data are consistent with the

hypothesis that ATM controls IGF-1 expression during senes-

cence, as it does after DDRs [27].

To further demonstrate a role for ATM in sCLU expression in

senescent IMR-90 cells, the ATM and ATR inhibitor (AAI in

0.2% FBS medium) was used to decrease intracellular psCLU and

sCLU expression, as well as mature sCLU expression in

conditioned medium (Figure 3D). We further analyzed IGF-1

levels in the medium and found that inhibition of ATM

significantly decreased IGF-1 expression in these cells (Figure 3E).

Taken together, these results suggested that ATM was an

important mediator of sCLU expression during senescence, where

it regulates sCLU expression by controlling IGF-1 levels.

sCLU Induction during Senescence is Mediated by IGF-
1R/MAPK/Erk-1/2/Egr-1 Signaling

Our data strongly suggested that functional ATM could

regulate IGF-1 expression during RS or SIPS pathways. Indeed,

IGF-1 expression was approximately two-fold higher in condi-

tioned media from senescent compared to young IMR-90 cells

(Figure 4A). Analyses of differential signal transduction responses

in senescent versus young IMR-90 cells showed that IGF-1

Figure 4. sCLU induction during senescence is mediated through IGF-1R/MAPK/Erk/Egr-1 signaling pathway. (A) IGF-1 expression was
increased in senescent IMR-90 cells. IGF-1 levels in media from young or senescent IMR-90 cells were measured using ELISAs as described above, and
normalized to media volume and adjusted cell number (46104 cells). (B) Total IGF-1 receptor (IGF-1R), phosphorylated IGF-1 receptor (p-IGF-1R), Src,
phosphorylated Src, Erk-1/2, phosphorylated-Erk-1/2, and Egr-1 levels in young (Y), middle-age (M), premature-senescent (PS), and senescent (S) IMR-
90 cells were determined by western blot analyses. b-Actin levels were measured to monitor loading. (C) Exposure to the indicated doses of the IGF-
1R tyrosine kinase inhibitor (AG1024) repressed sCLU levels in senescent IMR-90 cells. psCLU and sCLU were detected by western blot analysis. b-
Actin levels were monitored to show equal loading. Senescent IMR-90 cells exposed to varying doses of AG1024 (mM as indicated for 24 h) showed
dose-dependent increases in apoptosis (monitored by TUNEL + staining). Only senescent, and not young or middle-aged IMR-90, cells were
hypersensitive to AG1024. In the experiment outlined below the western blot analyses cells were exposed to AG1024 (5 mM) for 48 h and therefore
higher levels of apoptotic cells were noted in senescent IMR-90 cells compared to cells exposed for 24 h above. Note that only senescent cells were
hypersensitive to these inhibitor treatments. All experiments were repeated three times in triplicate.
doi:10.1371/journal.pone.0099983.g004
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Figure 5. sCLU protects cells from senescence. (A) sCLU was knocked down in an IMR-90 pooled population containing a lentiviral-mediated
inducible shRNA-sCLU construct cultured in presence of doxycycline (dox), while expression of sCLU was not affect in the same pooled population in
the absence of doxycycline (dox). The population doubling of IMR-90 cells with inducible shRNA-sCLU decreased faster when cultured in the
presence of dox compared to in cells cultured without dox. **, p-value of two curves was #0.01. Experiments were repeated three times, starting
from infection of young IMR-90 cells with selection of a pTRIPZ-shCLU-containing pooled population. Similar results were observed in all three
experiments and representative results from one experiment are shown. (B) IMR-90 cells with sCLU knockdown had significantly higher %SA-b-gal+
cells after being cultured for 33, 39, and 53 days with or without dox. SA-b-gal+ staining was performed to identify senescent cells. *, p-value #0.05.
(C) Controls included a pooled IMR-90 cell population contain an inducible shRNA-non-targeted, scrambled shRNA construct were cultured in
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receptor (IGF-1R) levels were activated (elevated P-IGF-1R/t-

IGF-1R) in senescent cells; antibodies to human IGF-1R are not

ideal. Src and Erk-1/2 kinase levels were also elevated in middle-

aged and senescent compared to young IMR-90 cells. The

transcription factor, Egr-1, which binds the hCLU promoter and

mediates sCLU expression [28], was significantly increased during

senescence in IMR-90 cells (Figure 4B). To further confirm the

specificity of IGF-1/IGF-1R/MAPK/ERK-1/2/Egr-1 signaling

in sCLU induction during senescence, we treated senescent IMR-

90 cells with the IGF-1R inhibitor, AG1024, which effectively

blocked IR-induced sCLU expression [27,28] and also suppressed

sCLU expression in senescent IMR-90 cells in a dose-dependent

manner (Figure 4C). While significantly suppressing sCLU

expression, we also noted that senescent IMR-90 cells exposed

to the IGF-1R inhibitor (AG1024) underwent significant pro-

grammed cell death (apoptotic) responses in a dose-dependent

manner (Figure 4C). Interestingly, young and middle-aged cells

did not respond to AG1024 in the same manner with no

significant apoptosis noted after exposure to 5 mM of the drug

(Figure 4C). Collectively, these results strongly suggest that when

cell undergo RS or SIPS, but not oncogene-induced senescence,

ATM-dependent DDR leads to increased IGF-1 expression that

stimulates IGF-1R/MAPK/Erk-1/2/Egr-1 signaling that leads to

concomitant elevated sCLU levels. The data further suggest that

the IGF-1/IGF-1R-sCLU pathway is required for the overall

survival of senescent cells, whereby suppressing this pathway

induces an intracellular death decision.

sCLU Knockdown Promotes Cellular Senescence
sCLU functions as an extracellular chaperone, protecting cells

from inflammation, and suppressing apoptosis by its proposed

interaction with Bax [22,33]. Its role in senescence has not been

defined. Given the increased apoptotic responses in cells deficient

of sCLU expression (Figure 4C) exposed to an IGF-1R inhibitor,

we theorized that the effects of the IGF-1R inhibitor were due to

the proposed apoptotic inhibitory effects of psCLU/sCLU. To

explore sCLU’s role in senescence, we generated a conditionally

inducible, doxycycline-regulated shRNA-sCLU knockdown lenti-

viral expression vector, pTRIPZ-shCLU. When infected into cells,

pTRIPZ-shCLU controlled expression of shRNA specific to the

intron I/Intron III junction found only in sCLU mRNA, and not

in nuclear clusterin (nCLU) mRNA (Figure 5E); nCLU is a

cytosolic form of clusterin that induces cell death when activated

and translocated to the nucleus [35,36]. Early passage IMR-90

cells were first transduced with lentiviral pTRIPZ-shCLU, then

selected with puromycin to generate a pooled population.

pTRIPZ-shCLU-containing IMR-90 cells were then cultured

with or without Dox, and population doublings (PDs) and %SA-b-

gal+ cells monitored over time. Interestingly, Dox-treated,

pTRIPZ-shCLU-containing IMR-90 cells with continuous sCLU

knockdown showed decreased population doublings at ,passage

20 (Figure 5A), suggesting that loss of sCLU expression enhanced

SIPS responses in IMR-90 cells. Significant population doubling

time differences were noted (p-value of two population doubling

curves = 0.0001), with control cells plateauing at ,40 days in

culture, while Dox-treated IMR-90 cells underwent senescence at

day 32 (Figure 5A). Enhanced senescence was confirmed by

significant differences in the %SA-b-gal+ cells, where at least two-

fold increases were noted compared to untreated pTRIPZ-shCLU

IMR-90 cells that expressed sCLU at day 39 (Figure 5B). sCLU-

shRNA knockdown was confirmed in Dox-exposed pTRIPZ-

shCLU IMR-90 cells by Western blotting, while sCLU levels in

cells similarly cultured without Dox were not affected and were

significantly elevated (Figure 5A). To verify that these results were

not affected by addition of Dox or lentiviral infection alone, we

generated pooled clones using the same vector, but contain a non-

targeting shRNA (pTRIPZ-non silencing). As shown in Figures 5C

and 5D, Dox-inducible non-silencing shRNA had no affect on

sCLU expression (Figure 5C), both population doubling times and

%SA-b-gal+ cells were not significantly different with or without

Dox exposure over the life of the IMR-90 cultures (Figure 5C).

These results strongly suggested that decreased sCLU expression

due specifically to shRNA-sCLU knockdown, facilitated senes-

cence in IMR-90 cells. Thus, sCLU appears to play a protective

role from senescence in IMR-90 cells. Interestingly, however, loss

of sCLU did not lead to significant induction of apoptosis, strongly

suggesting that the role of sCLU in senescence is to suspend the

process and not to keep these cells alive. These data also strongly

suggest that IGF-1/IGF-1R signaling, in contrast, is a major

contributing factor that protects against programmed cell death

induction in cells.

Discussion

Here, we show that sCLU is up-regulated at a transcription level

during both RS and SIPS, but is not elevated in response to

oncogene-induced senescence. This is consistent with prior

findings in the literature showing that sCLU was induced in WI-

38 cells during RS or after H2O2-induced SIPS [19,21].

Mechanistically, we also demonstrated that sCLU was induced

during senescence through the ATM/IGF-1/IGF-1R/MAPK/

Erk-1/2/Egr-1 signaling pathway, a pathway that is also

stimulated and regulates sCLU induction during DDR (Figure 6).

These results support the observation that cellular senescence

processes share significant overlap with DDR pathways. And

many key factors (e.g., ATM, p53, p21) that are involved in the

DDR in human cells also play important roles in cellular

senescence responses.

Importantly, our data clearly support a role for ATM in the

induction of sCLU levels in senescent cells by controlling IGF-1

expression. Upon DNA damage, including uncapped telomere

ends of extensive DNA lesions created in SIPS responses, ATM is

recruited to the damage site and activated via phosphorylation

[34]. Activated ATM, in turn, stimulates several proteins that can

mediate DNA damage repair, cause transient growth arrest, and

possibly lead to cell death or senescence. Ironically, loss of ATM

function sensitizes cells to DNA damage, leading to enhanced cell

death and possibly senescence. ATM can be activated by naked

telomeres and trigger cellular senescence signaling during RS

[7,11,35]. Similarly, ATM activation by overwhelming DSB

presence or absence of dox. Growth rates and sCLU levels were not affected in the shRNA-Scr (non-targeted) IMR-90 cell populations. Population
doubling of IMR-90 cells with inducible non-targeting shRNA was not different when cultured with/without doxycycline. The experiments were
repeated three times similarly as inducible shCLU experiments. Representative results of three experiments were shown here. (D) After culturing for
38, 45, and 65 days with or without dox, SA-b-gal+ staining was performed to identify senescent cells in IMR-90 pooled populations with inducible
shRNA-Scr (non-targeting) vector. (E) Specificity of shCLU knockdown in conditional IMR-90 senescent cells. IMR-90 pooled populations containing
the pTRIPZ-shCLU vector was cultured with or without doxcycline (100 nM for 3 days) and sCLU and nCLU levels were monitored using Western blot
analyses. a-Tubulin levels were shown as a loading control. Note that sCLU and not nCLU levels were specifically knocked down (.90%) in cells
exposed to dox. In these experiments, IMR-90 cells were cultured in 95% air-5% CO2, estimated at ,20% O2.
doi:10.1371/journal.pone.0099983.g005
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lesions may also lead to senescence signaling during SIPS.

However, ATM also plays a protective role in aging and cellular

senescence, since ATM-deficient AT cells undergo senescence

faster [38,39,40]. Consistently, AT patients also age faster. Our

finding that ATM up-regulates and controls the IGF-1-sCLU

expression axis [27], as well as sCLU protecting cells from

senescence, may help to explain the role of ATM in senescence/

aging protection (Figure 6).

Our results demonstrate that sCLU protects cells from

senescence, suggesting that a role of increased sCLU expression

in senescent cells is to counteract senescence by some as yet known

mechanism. This result is consistent with the role of ATM in

protecting cells from senescence. AT fibroblasts expressed low

basal levels of sCLU, and failed to induce sCLU during senescence

or DDR responses, due to the lack of ATM signaling (Figure 3A)

that controls IGF-1 production [27]. Thus, the role of sCLU

expression in DDR responses mirrors ATM, as both AT cells and

cells knocked down for sCLU expression are hypersensitive to

oxidative stress and senescence. AT patients also age faster

[38,39,40], and patients with lowered circulatory sCLU levels also

age less well than Centenarians in a recent study [36]. Re-

introduction of ATM into AT cells increased the lifespan of AT

cells and restored sCLU induction responses after DDR or

senescence induction pathways [27]. Collectively, these results

suggest that sCLU may play a role(s) in aging. Furthermore,

increased levels of sCLU may protect cells from senescence

(Figure 6).

Our original hypothesis was that as an anti-apoptotic protein,

sCLU may increase the population doubling by protecting cells

from spontaneous apoptosis. However, when sCLU was knocked

down in middle-aged or senescent IMR-90 cells, we did not

observe an increase in apoptosis in this cell population. These data

suggest that the anti-apoptotic function of sCLU may somehow

not be operative during senescence and may not contribute to

increased cell growth. Surprisingly, Dox-induced shRNA-sCLU

knockdown IMR-90 cells showed increased SA-b-gal+ stained

cells, confirming its role in senescence protection (Figure 5). sCLU

also functions as an extracellular chaperone, that helps clear

unfolded proteins from the surrounding microenvironment

(conditioned medium). Several studies have shown that other

chaperones, like heat shock proteins (HSPs), were involved in

cellular senescence [37,38,39,40,41]. Decreasing or inhibiting

Hsp90 or Hsp72 induced cellular senescence, while over-

expression of Hsp72 suppressed senescence pathways [37,38,39].

A small heat shock protein, Hsp27, also suppressed senescence by

modulating p53 signaling [40]. Thus, sCLU may protect cells from

senescence by decreasing cellular stress caused by the accumula-

tion of denatured proteins, since both the cellular level of HSPs

and protein quality control declines during senescence [41].

Furthermore, other findings, as well as our results have shown that

extracellular sCLU can interact with several cell surface receptors,

Figure 6. A model of the signaling pathway that mediates sCLU induction during senescence showing the role of sCLU in
senescence compared to IGF-1/IGF-1R signaling required to prevent apoptosis. AAI and AG1024 are small molecule chemical inhibitors
that inhibit ATM and ATR, and IGF-1 tyrosine kinase receptor (IGF-1R), respectively.
doi:10.1371/journal.pone.0099983.g006
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such as IGF-1R, TGF-b receptor I and TGF-b receptor II, and its

interactions with these receptors modulates their activities in as yet

undefined mechanisms. Both IGF-1 and TGF-b receptor-mediat-

ed signaling pathways are involved in cellular senescence, thus

sCLU might modulate (i.e., prevent) senescence by regulating the

activities of these receptors. It should be noted that knocking down

sCLU expression alone does not alter, or may enhance, IGF-1/

IGF-1R signaling [27].

Finally, our data strongly indicate that the remaining IGF-1/

IGF-1R signaling pathway, not affected by shRNA-sCLU specific

knockdown, but inhibited by IGF-1R receptor kinase-specific

agents (e.g., AG1024) are essential for the survival of senescent

cells and cause these cells to undergo programmed cell death

(Figure 4C). The potential significance of these differential

responses clinically could well depend on the age of a patient.

Since senescence is probably tumor-suppressive in young individ-

uals, but potentially tumor-promoting in aged individuals,

efficacious adjuvant treatment of patients using sCLU knockdown

therapies (using OGX011), or exposure to IGF-1R tyrosine kinase

inhibitors, may well depend on the overall age of the individual. In

the future, physicians may well decide to use OGX-011 in a young

patient to promote the tumor-suppressive properties of this

therapy to cause onset (and possibly increased overall numbers)

of senescence cells. Then, later in life and if IGF-1R inhibitors are

truly specific for senescent cells, the physician may subscribe such

inhibitors for prevention of senescence-induced microenviron-

mental changes that might promote tumor survival and progres-

sion. Further mechanism studies and trials in young and aged mice

in vivo will be required to explore these interesting senescence-

induced micro-environmental dynamics.
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